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Pavel Sergeevich Krasnoschekov (06.05.1935-26.02.2016) was born in
Kalach town, in Voronezhskiy region of Russia. In 1958, he graduated
from Faculty of Mechanics and Mathematics of Lomonosov Moscow
State University (MSU), and in 1961, he completed the aspirant (PhD)
program at Steklov Institute of Mathematics. He got his candidate degree
in 1964, and doctor of sciences in physics and mathematics degree in
1973. In his doctoral thesis, he studied models of large-scale military
conflicts. In 1984, he was elected as a corresponding member of Academy
of Sciences, and as a full member of Russian Academy of Sciences (RAS)
in 1992. Since 1966, and until the end of his life, he has been working
in Computing Center of RAS, as a deputy director (1989-2004), and
as a chief scientific researcher (2004-2016). Since 1975, he has also
been a head of Operations Research department at Lomonosov MSU.
In 1981, P.S. Krasnoschekov was rewarded the State Premium for his
work on theoretical foundations and practical applications of computer-
aided design. These results provided a possibility for the efficient design
and production of airplanes by Sukhoy plant since 1980. In 1990th,
P.S. Krasnoschekov has proposed and studied a model of collective
behavior with application to elections. Afterwards, he has been working
on foundations of theoretical physics in the general field theory. There
are more than 10 doctors and 25 candidates of sciences among his pupils.
His book “Principles of Models’ Design” (1983, co-authored by A. Petrov)
remains a basic textbook for students at Lomonosov MSU and at Moscow
Institute of Physics and Technology.
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Optimization methods

Charged balls method for finding the
minimum distance between two plane convex
smooth curves in three-dimensional space*

M.E. Abbasov
St. Petersburg State University, 7/9 Universitetskaya nab.,
St. Petersburg, 199034, Russia

We consider the problem

|z -yl — min
rzeX
yey

where X and Y are some plane convex smooth curves in R?. This problem
appears in astronomy, computer graphics and many other areas. New
recently described charged balls method [1], is proposed to solve the
problem. This method is based on mechanic analogies [2]. The approach
of passing from the original stationary problem to a nonstationary
mechanical system is quite common and was used by many researchers
to describe new effective optimization methods [3, 4].

It is proposed to place two oppositely charged balls onto the curves
in an arbitrary points. Balls will start to move towards the equilibrium
position, which obviously coincides with the solution of our problem. By

*This research is supported by RFBR, research project No. 16-31-00056 and by
Saint-Petersburg State University under Grant No 9.38.205.2014.
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means of Newton’s second low equations of motion can be derived:

miji(t) = Fi(t) + N1(t) + Ra(t)
mija(t) = Fa(t) + No(t) + Ra(t)

Here m is the mass of the balls, Fi, Fy are Coulomb forces, Ny, No
are normal forces, R;, Ry are viscous friction forces, needed to provide
the tendency of 71,72 (coordinates of the first and second balls
correspondingly) to the equilibrium. Using numerical method for solving
the obtained system of differential equations, we get the optimization
algorithm for our initial problem.

Numerical experiments and animations that illustrate the work of
the algorithm are presented.

References

1. Abbasov M.E. Charged balls method (in Russian). Preprint. http:
//www.apmath.spbu.ru/cnsa/pdf/2015/Charged_balls.pdf
//  Seminar on Constructive Nonsmooth Analysis and
Nondifferentiable Optimization (CNSA & NDO), 2015.

2. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerical methods
(in Russian). Moscow: Nauka, 1987.

3. Polyak B.T. Introduction to Optimization. Optimization Software,
1987.

4. Vasiliev F.P. Optimization methods (in Russian). Moscow:
Factorial Press, 2002.
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Pontryagin maximum principle in optimal
control problems with geometric mixed
constraints®
A.V. Arutyunov, D.Yu. Karamzin, and F.L. Pereira
Peoples’ Friendship University of Russia, Federal Research Center

“Informatics and Control” of the Russian Academy of Sciences ,
University of Porto

Consider the optimal control problem

ta
Minimize  ¢(p) + folz,u, t)dt
t
subject to @ = f(x,'LlL,t), teT, (1)
R(z,u,t) € C,
peK.

Here, T' = [t1, t2] is the time interval (which we assume fixed, and ¢5 >
t1), & = %, x is state variable, which takes values in the Euclidean space
R™, p = (z1, 2z2) is the so called endpoint vector, where 1 = z(t1), 2 =
x(t2), and u(-) taking values in R™ is the control function. The vector-
function R : R" xR™ xR! — R” and the closed set C' define the geometric
mixed constraints. The control function u(-) is considered measurable
and essentially bounded, such that, together with the arc z(-), satisfies
the mixed constraints. The set K is closed and it defines the endpoint
constraints which have to be satisfied as well. If the mixed constraints
and the endpoint constraints are satisfied, then the control process (x, u)
is called admissible. The control process (z*,u*) is called optimal, if
the value of the minimizing functional at any admissible process is not
less than its value at («*,u*). For the classic formulation of the control
problem, see [1].

The mappings in (1),

0 :R?" — R,
f:R® xR™ x Rl = R",
fo:R" x R™ x R' = R, and
R:R" xR™ xRl - R"

satisfy the following main hypothesis. The maps f, fo, R are continuously
differentiable in (z,u) for a.a. t. On any bounded set, these maps and

*This research is supported by the Russian Foundation for Basic Research, Grant
numbers 15-01-04601, 16-01-60005, and by FCT (Portugal) under Grant PEst-OE-
EEI-UI0147-2014.
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their partial derivatives in (z,u) are bounded, Lebesgue measurable in ¢
for all (x,u), and continuous in (z, ) uniformly in ¢. The scalar function
© is continuously differentiable.

Everywhere in what follows, assume that problem (1) has a solution
(z*,u*).

Consider the set-valued map
U(z,t) :={ueR™: R(z,u,t) € C}.

Definition 1 A point u € U(x,t) is said to be regular provided that

*

Ne(R(z,u,t)) Nker 885 (x,u,t) = {0}. (2)

Here, the set N¢(y) designates the limiting normal cone in the sense
of Mordukhovich, [2], and A* denotes the conjugate matrix or operator
A. The regularity of the point u means that the so called Robinson
Constraint Qualification (RCQ) holds at u for the constraint system
R(z,u,t) € C, [3].

The condition (2) can be reformulated in the following way: there
exists a number € > 0 such that

5| 2 eyl ¥y € Ne(Ra )

The upper bound of all such €’s is also known as modulus of surjection
of the constraint system M : R(x,u,t) € C. Let us denote the modulus
of surjection to an arbitrary given constraint system V : F(z) € S at
point z, by sur V(z).*
Then, the regularity of the point v € U(xz,t) is equivalent to the
relation
sur M (z,u,t) > 0.

We denote by Useg (2, t) the subset of all regular points of U(x,t). The
subset of points for which sur M (x, u,t) > ¢ is denoted by UZ,, (z,t). Note

reg

*In the literature, the modulus of surjection is introduced for set-valued maps
G: X — 2Y. If spaces X, and Y are finite dimensional, then

sur G(zly) = inf{[z"] : 2" € D*G(z,y)(y"), [y*| = 1}.

Here, D*G(z,y) is the limiting coderivative of G at (z,y). By definition, sur G(z|y) =
oo when y ¢ G(z). If we set G(+) := R(z, -,t)—C, then sur M (z, u, t) = sur G(z, u, t|0).
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that this set may not be closed. It is clear that

Ureg (2, 1) Ureg(x,t) CU(z,t) Ve >0, and

Ue (xz,t) € UP (x,t) fora> >0,

reg reg

N

and Ul (x,t) = Ul(x,1).
The following concept corresponds to the classic approach to

regularity for mixed constraints. (The so-called strong regularity.)

Definition 2 The trajectory x*(t) is said to be regular w.r.t. the mized
constraints provided there is a number eg > 0 such that

U(z*(t),t) C U

reg

(x*(¢),t), for a.a.t € T.
However in what follows a weaker regularity condition will be used.

Definition 3 The trajectory x*(-) is said to be weakly reqular w.r.t. the
mized constraints provided there is a number eg > 0 such that
u*(t) € Ursy(z*(t),t) for a.a.t €T.

The regularity condition imposed in Definition 3 is weaker than the
one from Definition 2, as it holds only locally in a small tube about u*(¢),
but not for all feasible points. The price to pay for this sharp drop down
from the global to the local nature is the modified Weierstrass-Pontryagin
maximum condition (6) that it appears in Theorem 1. See the discussion
in [4] for more details and examples over the given concepts.

Along with the regularity, we also need the notion of the proper point.
Let us introduce it. Let § be a positive number and ug € U(z,t). Along
the constraint system M defining the mixed constraints in problem (1),
consider the associated constraint system

) R(z,u,t) € C,
M(S,uo { |U, — U0| S é.

Definition 4 A point ug € U(x,t) is said to be proper (or, a,y-proper)
provided there exist .,y > 0 such that

sur M, (z,u,t) > v Yu € U(z,t) : |[u—wuo| <0, Ve (0,a).

Results of [4] suggest a large subclass of the constraint systems for
which any regular point is proper. Such a subclass includes convex sets,
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semi-algebraic sets, or even more general than semi-algebraic type of
the sets, the sets which admit the so-called Whitney stratification, i.e.,
satisfying the Whitney condition b).

Let us impose the following condition.

Condition P) For all ¢ > 0, 34 > 0 such that, for any measurable
bounded selector u(t) of the map Ug, (t) := Ug,(x *( ),t), there exists a
measurable scalar function a(t) s.t. u(t) is a(t),y-proper for a.a. t.
Condition P) may seem somewhat cumbersome, but this condition
is satisfied for the above mentioned subclass of the constraint systems.
This means that the result following below is valid under C' convex, or
semi-algebraic, or, even, when the set C' admits Whitney stratification.
Following [1], we introduce the Hamilton-Pontryagin function

H(xv u, tv wv >‘) = <¢7 f(xv U, t)> - )\fO(xv u, t)
Under the weak regularity condition the following theorem is true.

Theorem 1 (Maximum Principle) Let € € (0,e9). Suppose that the
process (x*,u*) is optimal to problem (1), the arc x*(t) is weakly reqular
w.r.t. the mized constraints and that Condition P) is satisfied.

Then, there exist a number X\ > 0, an absolutely continuous function
¥ T — R™, an essentially bounded measurable function n : T — R",
and a constant k > 0, which all depend on e, such that

n(t) € conv Ne(R(t)) for a.a.t, (3)
90 = 2280 4052 0) for a.at, (@
(bt ~(t2) € AZE(57) + N, (5)
uecrlngfi(t) H(u,t) = H(t) for a.a.t, (6)
2t 090 =0 for a.a.t, ()
@) < KO+ D)) for a.at, ®)
and A+ |Y(t)] >0 VteT. (9)

Here, if some of the arguments of a function or of a set-valued map
are omitted, then it means that the extremal values x*(¢), u*(t), ¥(¢),
and A are in the place of the omitted arguments.
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This result covers the corresponding results from [5], where C' was
considered merely convex.
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The algorithm for auxiliary problem in
SQP-method

V.A. Bereznev
A.A. Dorodnitsyn’s Computing Center FRC IC of RAS, Moscow,
Russia

Currently methods of successive quadratic programming (SQP) are
among the most effective optimization methods.

Suppose that the function f : R, — R and map F : R, — R,, are
twice differentiable on all R,,. Consider the problem

f(z) > min, ze€X={xeR,|F(z) <0}. (1)

Let ¥ € R, — the current approximation of required stationary
point x* of problem (1). The essence of the SQP-method lies in the
approximation of this problem near the 2* of the quadratic programming
problem types

THE%?’C {Q(x) = %(x,Hx) + (d,x) —l—D} X ={zeR, | Az < b}, (2)
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where the symmetric matrix H = f”(z*) is assumed positive definite, so
g(z) strictly convex, D = f(z*)— (f' (%), 2*) + f'(2*), 2*) + % (2%, Ha*),
d= f'(z*)—Ha* A= f'(z*) — matrix of dimension m x n, rankA = m,
m < n, b= (f'(z%),2*) — F(z*) € R,,, X} # @.

The Lagrangian dual problem has the form

y=>0

min {w(y) = %<y, Qy) + (y,c) + C} , (3)

where Q@ = AH'A",c = AH'd—b, and constant C' = +(d, H'd)+D.
When you made assumptions about the matrices H and A matrix Q
positive definite.

First of all, note that the point 4° = —Q~'c is a point unconditional
minimum of the function ¢(y). Thus, if ¥ > 0, then this point — the
solution of the problem (3). It is obvious also, that the solution of the
problem is the point y* = 0 if ¢ > 0. Suppose that the vectors y° and ¢
contain negative components.

It is known that the problem (3) can be reduced to normal form
by using regular transformation of coordinates. Let the matrix U define
such the conversion, i.e. y = Uz and z = U~ !y. In this case transform
the problem (3) takes the form

. 1,
== 2 _ = >
Izrél?{F(Z) 5 ;:1 z —(z,p) + C} , Z={2€R, [Uz20}, (4)
where p = —U "¢ and the set Z is a pointed cone in R,, as the rank of

the matrix U is equal to m. Using, for example, the Lagrange’s method
full selection of square, consisting of (m — 1)-th steps of the same type of
conversion matrix coefficients (), the quadratic form can be reduced to a
canonical form. Consequently, this procedure requires O(m?) elementary
operations. For reduction of quadratic form to normal form it remains
to multiply the received regular matrix on diagonal that does not affect
the specified computational the complexity of the procedure.

Form problems of type (4) attractive for analysis because the
surfaces of level of the objective function of this problem are concentric
m-dimensional sphere centered at the point p. Consequently, the solution
z* of problem (4) is a projection of the point p on a cone Z. In other
words, the problem (4) an equivalent problem

mip { () = 3= 1?} 5)

z€Z
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To solve this problems we can use the proposed in [1] algorithm,
whose computational complexity is O(m?*). Hence the computational
complexity of the method of solution of the problem (2). Indeed, when
the reduction of the original problem to the dual problem (3) the most
time consuming operation is the inverse of the matrix H, which requires
O(n?®) elementary operations. Reduction of quadratic form (y,Qy) to
normal form associated with the implementation of O(m?) operations.
Finally, the solution of the problem (5), as already noted, provides for
O(m*) operations. Thus, to solve the problem (2) requires O(n® + m?*)
elementary operations. If z* is the solution of the problem (5), the
solution of the original problem (2) is a formula x* = H=1(d — ATUz*).

As shown in [1] the proposed algorithm is applicable to problem (2),
the matrix H which is nonnegative determined. Let f(z) bounded from
below on X. Then the solution of the problem exists. Denote by X* the
set of its solutions.

Using the nonsingular transformation y = V 'z will give quadratic
form to canonical form. Then the problem (2) takes the form

min {w(0) = 50890 - (e} ©

yey

where A — diagonal matrix of size n with elements \;,i = 1,7 on the
main diagonal, ¢ = dV")Y = {y € R, | Gy = b},G = AV. We assume
that the set Y is not empty and is bounded, i.e. there exists a constant
D that |ly|| < D for any y € Y. Denote by Y* the set of solutions of
the problem (6) and by ©* the optimal value of the objective function
of this problem.

Suppose the first k numbers \;, i = 1, k is positive and Mgy 1,. .., s

are zero. Let \* = min A\; > 0. Put A, = A+ ¢, where [ is the identity
i=T,k
matrix of size n, and € : 0 < € < A*, and consider the problem

min {we(y) = %<y, Acy) — (g, y>} ; (7)

yey

It is obvious that the problem (7) is a quadratic programming
problem with positive definite quadratic form, which we will use the
algorithm described above.

Let y¥ - solution of problem (7). In virtue of strong convexity of 1, (y)
is the solution unique. As shown in [1] for any p > 0 there is such € > 0
that ¥(yX) — ¥* < u, where y* — the solution of problem (7).
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Thus, it follows from the theorem of weak convergence of the
algorithm when ¢ — 0. In other words, it is possible to obtain a solution
with any given accuracy in functionality, cost decision O(n3® + m?*)
operations.
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Newton-type method for variational
equilibrium problem*

A.N. Daryina and A.F. Izmailov
Dorodnicyn Computing Centre of RAS, Moscow State University,
Moscow, Russia

We consider the Generalized Nash Equilibrium Problem (GNEP)
with two players and shared constraints:

i@, @) S min, ot 2?) - mip,
x x

gat, 2?) <0, gat, 2%) <0,

(1)

where the objective functions f; : R™ xIR™ — R, fo : R" xR™ — R
and the mapping ¢ : IR™ x IR"? — IR™ are smooth.

A point (7!, %) € R™ x IR™ is called generalized Nash equilibrium
if #! is a solution of the first problem in (1) with 2 = z2, and 7?2 is a
solution of the second problem in (1) with 2! = #!.

GNEPs arise in various applied and theoretical areas: economics,
engineering, computer sciences, operations research, etc. This problem
class has been attracting recently much attention, in particular because
it turned out that the approaches and methods of modern variational
analysis can be successfully applied in this context.

For each optimization problem in (1), define its Lagrangian L; :
R™ x R™ x R™ — IR,

Lj( 1)xzaMj):fj(x17x2)+<,ujvg(xlax2)>a ]:17 2;

*This research is supported in part by the Russian Foundation for Basic Research
Grant 14-01-00113, by the Russian Science Foundation Grant 15-11-10021, by the
grant of the Russian Federation President for the state support of leading scientific
schools NSh-8215.2016.1, by CNPq Grant PVE 401119/2014-9, and by Volkswagen
Foundation.
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and consider the concatenated Karush—Kuhn—Takker optimality condi-
tions:

W20, (uh gat, @) =0, @220, (2 g a?) =0,
g(a', a?) < 0.

A generalized Nash equilibrium (z!, 72) is called variational equilib-

rium if the corresponding Lagrange multipliers of two players coincide,

ie., (2!, ¥?) satisfies (2) with ! = 1?2 = i € IR™. Therefore, variational

equilibria are characterized by system (2), where u! = pu? = u:

0L,
_— 1 2 = _— 1 2 =
8 1 (x ? z Y M) 07 8.1:2 (x ? z Y M) 07 (3)

p>0, gzt 2?) <0, (u g(z', 2?))=0.

Variational equilibria are very important from practical point of view.
For example, in various economics applications, Lagrange multipliers ji'
and fi% can be interpreted as prices, and keeping them the same for both
players is necessary for a solution to make practical sense.

Systems (2) and (3) can be both interpreted as mixed complemen-
tarity problems. However, unlike for (2), solutions of system (3) can
naturally be isolated, and hence, can be found by methods developed for
finding isolated solutions of mixed complementarity problems; see [1-3]
and references therein.

In this work, we apply the algorithm from [2, 3] for finding variational
equilibria. We establish global convergence properties of the algorithm,
and provide the assumptions guaranteeing superlinear convergence rate.
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Study of a one-dimensional optimal control
problem with a purely state-dependent cost

A.V. Dmitruk and A.K. Vdovina
Lomonosov Moscow State University, Moscow, Russian Federation

We consider the following optimal control problem on a fixed time
interval [0, T:

T
J(z(t)) = /0 e ®(z(t)) dt — max, (1)

= f(z ug(z), u| <1,
{ f(x) + ug(x) |u @

z(0) = xo, x(T) =z,

where both the state z(-) and control u(-) variables are scalar functions.
We assume that the function & is continuous and wunimodular. The
latter means that it has the only maximum point z*, and moreover,
it increases for x < z* and decreases for z > z*. The functions f and
g are differentiable, g(x) > 0. (Note that here we do not assume the
differentiability of ®, neither the monotonicity of f, g.) The admissible
control set is [—1,1]. (The case of arbitrary control interval a < u < b
can be reduced to this one by a simple rescaling.) The time interval
[0, 7] is supposed to be big enough.

We also assume that the Cauchy problem & = f(z) 4+ ug(x), z(0) =
xo has a solution on the whole interval [0,7] for any admissible u(t),
and that some of these solutions satisfy the required terminal condition
QT(T) =T .

Since the problem is linear in the control and the admissible control
set is convex and compact, the classical Filippov theorem [1,2] guarantees
that an optimal trajectory exists. Our aim is to find it.

It follows from the properties of ® that one should keep as close
as possible to the point x*, preferably just stay at x*. Therefore, the
character of optimal solution depends on whether the control system
admits staying at the point z* on some time interval, or not. If it does,

we have £ = 0, then u = — f(2*)/g(«*), which means that the solution
depends on whether u* = —f(z*)/g(z*) is an admissible control value
or not.

The problem (1)—(2) appears in a large variety of applications; for
example, some models of mathematical economics can be reduced to
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it Usually, the only considered case is when u* = —f(z*)/g(z*) is
admissible, even |f(z*)/g(z*)| < 1, therefore we call this case standard.

In a number of works (see e.g. [3 — 5], to mention just a few)
this problem is solved by using the Pontryagin maximum principle
(PMP). However, it can be noted that the usage of such an advanced
theoretical result as PMP is excessive in this standard case, because the
solution can be easily found on the base of well known facts of classical
analysis by using the concept of turnpike and the most rapid approach
path (MRAP). The last concept, in turn, is based on the Tchyaplygin
comparison theorem for solutions of one-dimensional ODEs [6]. Some
authors use also the Green theorem (e.g., [7, 8]), but this also seems
redundant. Below we provide a rigorous justification of these arguments.

Moving on, we consider a modification of problem (1)—(2), when the
final state (7T is free and the cost involves the so-called salvage term.
In this case we give a complete solution of the problem.

All the above is related to the standard case. However, the most
interesting case is the non-standard one, when |f(z*)/g(z*)| > 1. As
far as we know, this case was not yet studied, though it could appear
in different models as well. Here we find an optimal trajectory by using
classical analysis, and then show that PMP gives the same result. The
specific case of |f(z*)/g(z*)| = 1 is degenerate and not that interesting.

Thus, in some cases, problem (1)—(2) and its modifications can be
solved without using of PMP. Let us emphasize that this is possible only
when the state variable is one-dimensional, because in higher dimensions
there are no comparison theorem for solutions of ODEs.
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Restoring the parameters of conjugated
pairs of linear algebraic equation systems by
a set solution

V.I. Erokhin and A.S. Krasnikov
Higher School of Technology and Energetics, St. Petersburg, Russia,
Russian State Social University, Moscow, Russia

The report observes the theorem of recovering the parameters of a
conjugated pair of linear algebraic equation systems by a set solution
using an interval criterion. Tasks in similar statements are considered in
articles [5], [6].

Theorem. The A € R™*"™ family of matrices and the b € R™,
¢ € R", families of vectors that guarantee that the set T € R"™ and
@ € R™ wectors belong to the

Axr =0,
{dila (1)

set of solutions of a conjugated pair of systems of linear algebraic
equations, and at the same time, ||Al| < a, ||b]| < B, |c|| < v, where
a>0, >0, v>0 can be constructed using

a an "
b=A——+ A1, — ——= ) Ab, 2
ata " < uTu> @

T Tz
=A—+ I, — =] Ac, 3
et (1 - ) ac 3)

1
A= Xz;J, (4)
formulas, where || -|| stands for, depending on the content, the Euclidean
matriz or vector norm, the scalar parameter \ is calculated using the

>\<5\:min<gyé71>7 (5)

a oy

rule,

N

B = L a1 il Ab (6)
S\ aTa maTa ’

N
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Tz

1 i
N = T + ACT <In — T > AC, (7)

a=4-7, (8)

Ab e R™, Ac € R" are random vectors, I, I, are singular matrices of
size m and n, accordingly.
At the same time

[All = A-a, (9)
bl = A- B, (10)
llell = A-7. (11)

On the basis of the theorem 1 it is possible to develop methods of
the solution of the tasks described in articles [1]-[4].

The report ends with a numerical experiment with a model example.

Initial parameters of the task (1):

1
2
3
1
rz= (0|, u=
1 1
10
1

a=2, pf=1  ~v=0.5.

We will set parameters Ab, Ac as follows

0.850679 0.358128

0.558565 0.488988

ab=1, . Ac= ]0.255962
0.901774

0.419518 0.929169

' 0.466757

According to (5)—(8)

B =1.234372, 7 =0.856068, a = 1.056707,

A = 0.584066.
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Further, from the (2)—(4) we obtain

A:

0.073855 —0.028283  0.109244  0.317574  0.120217
0.050392 —0.019298  0.074539  0.216686  0.082026
0.085080 —0.032581  0.125848  0.365843  0.138489
—0.018211  0.006974 —0.026938 —0.078308 —0.029644

0.101069
0.426799
—0.038704
0.291212
b= . c=| 0.149499
0.491668
0105941 0.434594
0.164515

Check shows what according to (9)—(11) is carried out

JA| = A-&=0.617186 < a = 2,

bl = A- B =0.720954 < B = 1,
e =A-5=05=1.

The equations (1) are solvable.
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Methods and software infrastructure for high
performance optimization*

Yu.G. Evtushenko and M.A. Posypkin
Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

We consider the following optimization problem
f(z) = min, s.t. g(z) <0, (1)

where f(-) : R® — R and ¢(-) : R® — R™ are continuous mappings.
Finding the exact minimum f, is usually impossible. Thus the goal is
to find e, d-solution defined as follows: x € R™, g;(z) <4, i =1,...,m,
flx) < fute

Te Non-uniform Covering Method proposed in [1] is able to find ¢, J-
solution in a finite number of steps. For realistic problems the number
of steps can be quite large. Numerous techniques to reduce the number
of steps have been proposed so far [2,3].

To support a variety of covering procedures we developed an object-
oriented flexible and extensible software infrastructure. In this framework
one can easily implement new methods to construct coverages and
combine them.The core class of this software environment is Cover.
Covers are constructed by cover factories inherited from the abstract
class
CoverFactory. At the moment factories relying on comparing lower and
upper bounds on an objective function, first and second order optimality
conditions are implemented.

Though advanced covering techniques significantly increases the
performance of the method for many practical problems the amount of
required resources is beyond the capacity of a single CPU computer. For
such problems the use of parallel and distributed computing is inevitable.

We created a software infrastructure that supports parallel
(distributed memory) tree search scheme. The approach implemented
by our tool separates the problem dependent part from the parallel

*This research is supported by RFBR project 14-07-00805 and by Ministry of
Science and Education of Republic of Kazakhstan, project 0115PK00554.
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implementation and from the logic of parallelization. The main issue
in parallel tree search is load balancing. Since the structure of the tree
is not known in advance the static distribution is usually not efficient.
To overcome this problem parallel solvers use dynamic load balancing to
distribute the computational load among processors.

In our tool special components called schedulers are used for
managing parallel resolution process. A scheduler interact via a strictly
defined interface with a solver and a parallel platform. It communicates
with the parallel platform by means of special commands such as:

e send N subproblems to the process P;
e send incumbent to the process P;
e send control command to the process P;

e recieve information (subproblems, incumbent or control command)
from the process P.

It is worth noting that this set of commands is problem-
independent. And thus it is possible to separate the logic of the parallel
processing management and the problem specific implementation of
those commands. Such separation is important for several reasons.
First, it saves efforts when implementing new problem because only the
problem-specific part has to be implemented and the scheduler is reused.
Second, common part can be a subject for a separate study. For instance
it is possible to compare different load balancing strategies on a simulator
or check the correctness of the parallel algorithm, e.g. identify possible
deadlocks.

The simulator transparently substitutes the real parallel system and
the real solver. Thus we can conveniently evaluate the performance of
scheduling algorithms incorporated in our tool. Besides the simulator we
also developed a graphical front-end that visualizes the processors load
and communication among processors.
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The Minkowski difference of sets with the
constraint structure

Z.R. Gabidullina
Kazan Federal University, Kazan, Russia

The analytical expression of the Minkowski difference of sets has its
own independent significance in many areas of mathematical sciences.
In [1]-[4], we used the Minkowski difference for investigation of the sets
separation problems. In this thesis, we shall demonstrate that the Min-
kowski difference is a useful tool for solving of the variational inequalities
interconnected with the linear separation problems.

In a wide range of applications of variational inequalities, the set ®
is determined by a system of inequalities:

d={rxeX: filx)<b,iel}, I={1,2,---,m}, (1)

where f;(z), i € I are arbitrary real-scaled quasi-convex functions which
are defined on a convex set X C R™,

The basic impediment to making use of operation of Minkowski
difference are problems related to its implementation for different
formulations of sets.

Let us recall that, in [2], we proved that the set ® — ¥ coincides with
the convex hull of the vectors zx —p;, k€ K, l € L if ® = co{zt}rek,
U =co{pi}ier, K={1,2,---,r}, L={1,2,---,s}.

Next, we presented in [4] the analytical expression of the Minkowski
difference of two sets ® and ¥, when ® is given by (1), and ¥ is
an arbitrarily defined set.

Let be given an arbitrary set ¥ C R™, the set ® be defined by (1),
X =R", then & — ¥ = &, where

O ={zeR": filz+y) <b,icl, yec T}

I={1,2,---,m}, -V ={zeR":z=ax—y,x €D,y € V}.
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From above, we observe that it really did not matter how the set W
was defined analytically or by some other way. For example, ¥ may be
defined in a similar way as the set ®:

U:={zxeR":gj(x)<d;,jeJ}, J={1,2,--- k}.

It is quite clear that if the set ® is prescribed by strict constraints, then
®; should be defined by the system of the strict inequalities, too.

In particular, the set W can contain a single point. For this case, we
consider below some examples.

1. Let @ # () be defined by (1), p € R",
O ={zeR": filx+p) <b,iel}, I={1,2,---,m},
then ® —p =y, where ? —p={z€R":z2=2—p, z € P}.
2. IfpeR"iel, I={1,2,---,m}, ®#0,
®={xcR": (a; ) <b;, a; €R", b; € R'}, (2)
then @—p:{xeR":<ai,x>Sl;i,l;i:bi—@i,p),iel}.
3.If d={zeR":I<z<wu, l,ueR"}, ®#(, then
O—p={zeR":l-p<z<u-—p}
4. If d={zeR": ||z —o|> <r* 0€R", reR.}, then
d—p={xcR":||lz—-0|?<r* 6=0—Dp}

5. If p:(plavpn)v(b:Ri:{x:(xla ,x"):ijO,j:Ln},
then
(I)_p:{x:(xl’7xn)x32—pjjj:]_7—n}

Let the set ® be given by (2) and ¥ be described as follows
U={yeR":(c;,y) <dj,c; €ER" d; eR'}, J={1,2,--- ,k},
then
O —U={zxeR": (a;,x)+ {(a;, y) <b;,y € T}

Let be given the arbitrary nonempty sets &, ¥ C R™. If the
variational inequality consists in determining a vector ¢ € R™\{0} such
that

(c,x—y—c) >0 ze€d,yecT, (3)
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then (3) can be solved by multiple sequential projections to each region.
Instead of this method for solving of (3), we can make use the single
projection of the origin of R?" onto the Minkowski difference of the sets
® and .

Naturally, if the sets ® and ¥ are nonempty convex and closed, and
at least one of them is bounded, then ® — ¥ is a convex and closed set.
Consequently, the operation of projection onto ® — ¥ is well defined.

Let Pg_y(0) stand for the projection of the origin onto & — ¥, If
Po_w(0) # 0, then it obviously holds that 0 ¢ ® — W. Therefore, there
exist the points = € ® and § € ¥ such that Z — 5 =Po_w(0), T # §.
These closest points of ® and ¥ can be found by solving of the following

system:
<Cv - i‘> > 0; T e (ba (4)
<C,Zj_y>20, yG\Ijv (5)

8

where ¢ = Pg_y(0).

Under assumption that both sets ® and W are bounded, the
continuous function (c,z) attains its maximum and minimum values
on the compact sets ® and ¥. As a consequence, the points Z and
g satisfying to (4)—(5) can be found by solving the following problems,
respectively:

min (c, ),
zed

max (c,y).

Let us notice that the vector (z,y), = € ®,§ € ¥ satisfying to
(4)—(5) is the solution of the following problem:

. 2
popin llz —yl*.

So, the problem of determining the distance between the sets & and ¥
can be solved by reduction to the next problem:

min |z

zed—-T
Consequently, the distance between the sets ® and W is equal to
[Po—w(0)].
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Properties of the shortest curve in a
compound domain*

A.V. Gorbacheva* and D.Yu. Karamzin**
* Peoples’ Friendship University of Russia, Moscow, Russia

** Federal Research Center “Computer Science and Control” of the
Russian Academy of Sciences, Moscow, Russia

A closed state domain given by constraints of the form g1 () = 0 and
g2(x) < 0 is considered, where z € R™ and g1 and go are given functions
ranging in R** and R*2, respectively. Such a state domain will be called a,
compound domain in what follows. In addition, throughout the following
we assume that the vectors aa—ggj(x), i=1,..,k, and %—gf(x), j € J(z),
are linearly independent for every x. Here J(z) := {j : g3 () = 0}.

Some properties of the shortest curve in a compound domain are
studied. The equation of the shortest curve is derived. It is important to
note the following. It might seem that the equation of the shortest curve
in the presence of inequalities is a trivial consequence of the optimality
principle. Indeed, any part of the shortest curve is a shortest curve itself;
then, by considering its separate parts lying on the boundary of the

*This research is supported by the Russian Foundation for Basic Research
(projects 16-01-00283, 16-31-60005), and by the grant of the President of the Russian
Federation MD-4639.2016.1.
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domain z : ga(z) < 0 and inside it (assume that ks = 1), we obtain
the desired result. This method applies if these parts lie entirely on the
boundary or inside the domain. However, such a part of the shortest
curve lying entirely on the domain boundary does not necessarily exist,
while the set of points of exit of the shortest curve to the boundary
can be, for example, a Cantor set of positive measure. Let us give an
example.

Let C' C [0,1] be a Cantor set of positive measure. Since C is closed,
it follows from the Whitney theorem that there exists a nonpositive
function f : [0,1] — R such that f~1({0}) = C. Take n = 2 and ga(x) =
f(z1) — x2 and assume that equality constraints are absent. Obviously,
the shortest curve joining the points (0,0) and (1,0) is defined by the
formulas x1(t) = t,z2(t) = 0,¢ € [0, 1]. One can readily see that the set
C x {0} lies on the boundary of the domain, and the set ([0,1]\ C) x {0}
lies in its interior.

Note also that we should study the class of functions to which the
shortest curve belongs. Obviously, in the presence of inequalities it does
not belong to the class Co([0,1]), in contrast to the geodesics. One can
readily construct a related example.

Consider the compound domain

M:={z € R": gi(z) =0, go(z) <0},

and let A and B be two given points in M, A # B. Consider a smooth
curve z(t) : [0,1] — M lying entirely in M and joining the points A and
B;ie. #(0) = A and x(1) = B. (We assume that M is a connected
domain; then, by virtue of the above-imposed regularity conditions,
there always exists such a curve.) The shortest curve in M is defined
as a continuously differentiable regular curve x,.(t) with the natural
parametrization that has the minimum length of all smooth curves x(t)
that lie in M and connect the points A and B.
Consider the control problem

1 1
5/ lu(t)|?dt — min, & = u,
0

g1(x) =0, g2(z) <0, (1)
ueR", 2(0)=A, z(1) =B.
Lemma 1 There exists a shortest curve x,(t) connecting the points

A and B. Every shortest curve is a solution of problem (1). The converse
is also true: each solution of problem (1) is a shortest curve.
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Lemma 2 The shortest curve z.(t) is a function of the class
W2 50([0,1]). In the case without inequality constraints, it belongs to
the class C2([0,1]).

Lemma 3 The shortest curve x,(t) satisfies the equation

&= —g; (@) P* (2)[P(2)g, ()97 ()P (2)] 7' P(2)gy,[5, 4] (2)

almost everywhere on [0, 1].

Above, where P(x) is the (k1 + k2) x (k1 + |J(2)|) matrix that takes
each vector y = (Y1,Y2, s Yky, Yky+1s Yk +2, -, Yky+ko) 1O the vector
y = (ylvaa o Yk Ykitjrs Yka4-jas oo ykl'i‘jk)v where ji, j2, ..., ji are the
indices forming the set J(z) and g = (g1, g2).

Remark 1

Along with Eq. (2), we have the equation of the shortest curve in the
simpler geometric form

T € Ny (a:)

Remark 2

If equality state constraints are absent, then the problem on the
shortest curve for a complex- shaped domain is also referred to as
the obstacle bypass problem [1, p. 66]. The possibility to derive the
equation of the shortest curve from the Pontryagin maximum principle
was pointed out by Gamkrelidze [2; 3, p. 347].

The proofs of these results can be found in [4]. The proofs use the
theory developed in [5].
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Fractional programming via D.C.
optimization®
T.V. Gruzdeva and A.S. Strekalovsky

Matrosov Institute for System Dynamics and Control Theory of SB
RAS, Irkutsk, Russia

The paper addresses the development of efficient methods for
fractional programming problems [1] as follows

(P) f(z) = Z @Ex) Jmin, z €5,

i(7)
where ¢;(z) >0, 9¥;(z) >0, i=1,...,m, Yz €S5.
This is a nonconvex problem with multiple local extremum which
belongs to a class of global optimization.

Together with problem (P) we will also consider the following
parametric optimization problem

m

A )

(Pa) Do (1) = @(x,0) =D [thi(x) — ugy(@)] | min, €5,
i1

where a = (aq,...,a;,)" € IR™ is the vectorial parameter.

Let us introduce then the optimal value function V(a) of
Problem (P,) as follows

V(o) :=inf{Py(z) | z € S}.
In addition, suppose that the following assumptions are fulfilled:
(a) V(a) > —co Va € K, where K is a convex set from R™;

(H1)  (b) Ya € K C IR™ there exists a solution z = z(«) to

m

Problem (P,), i.e. V(a) = > [¥i(2) — aidi(2)].

=1

*This research is supported by the Russian Science Foundation (grant 15-11-
20015).
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Then it takes place the reduction (equivalence) theorem for the fracti-
onal programming problem with d.c. functions and the solution of the
equation V(a) = 0 with the vector variable o = (s, ..., ;)7 satisfying
the following nonnegativity assumption

(H()) Yi(x) —aidi(x) >0 Ve e S, i=1,...,m.

Theorem. Suppose that in Problem (P) the assumptions (H1) are
fulfilled. In addition, let there exist a vector

aoz(am,...,a()m)T ekKcR™

for which the assumption (H(ao)) is satisfied.
Besides, suppose that in Problem (Pq,) the following equality holds

V(Oz()) é mwin {Z[z/}l(x) — a0i¢i($)] | x e S} =0.

i=1

Then any solution z = z(ap) to Problem (Po,) turns out to be a
solution to Problem (P), so that z € Sol(Py,) C Sol(P).

This theorem opens the door to a justified use of the Dinkelbach’s
approach for solving fractional programming problems with the goal
function presented by a sum of fractions all given by d.c. functions.

Therefore, instead of solving Problem (P) we propose to combine a
solving Problem (P,) with a search with respect to parameter (o« € IRT")
in order to find a vector (o € IR7') such that

V() = V(Pa,) = 0.

In this situation for every (a € IR") we must be able to find a global
solution to Problem (P, ) and we can do it using the global search theory
for d.c. optimization problems [2].

Besides, we combine the developed method with another approach to
the fractional programming which implies the reduction to the optimi-
zation problem of the form [3]

(7)1) i=1 z,0)
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where ¢;(xz) >0, ¥;i(z) >0, i=1,....,m, Yz €S.

Furthermore, using the global search theory for problems with d.c.
constraints [4]-[6], we proposed the global search method for solving the
fractional programming problem (P) via the combination of methods for
problems (P,) and (P1).

Finally, rather large field of computational simulation testings have
been carried out for some special test functions formed by linear and/or
convex quadratic functions.

First, the computational experiments have been performed on the
small dimension’s examples from [7]. Afterwords, the approach has been
tested on specially designed test problems up to dimension n = m = 100.
At the end, the test problems of dimension up to n = m = 200 designed
with the help of [8] have been also solved by the developed algorithms.

After analysis the results of computational simulations look rather
promising and competitive.
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When the solutions of complementarity
problems are monotone with respect to
parameters”

V.V. Kalashnikov!:2, N.I. Kalashnykova?, and A. Garcia-Martinez?
L Central Economics and Mathematics Institute (CEMI), Moscow,
Russian Federation

2 Tecnoldgico de Monterrey (ITESM), Monterrey, Nuevo Ledn,
Mezico
3 Universidad Auténoma de Nuevo Leén (UANL), San Nicolds de los
Garza, Nuevo Leon, Mexico

In many applied problems (such as, e.g., elasto-hydrodynamic
lubrication problem, some economic equilibrium problems, etc.), one of
the important question is if certain complementarity problem’s solution
is monotone with respect to parameters. Our paper investigates this
question and provides several sufficient conditions that guarantee such
a monotonicity of the solutions to linear and nonlinear complementarity
problems with parameters. In the majority of cases, it is required that
the principal mapping of the complementarity problem be monotone by
decision variables and, vice versa, antitone with respect to parameters.

The nonlinear complementarity problem (CP) is well-known and can
be stated as follows: Given a continuous mapping f : R} — R", find an
n-vector z € R™ such that

2>0,f(2) >0, and z7f(z)=0. (1)

A parametric version of the linear complementarity problem (i.e.,
when f is affine) was formulated by Maier [1]. The problem of
monotonicity of solutions in the parametric linear complementarity
problem (PLCP) was also studied by Cottle [2] who assumed the matrix
M of the parametrized mapping f(z;t) = M z+q+tp either to be positive
semi-definite (PSD), or else to have positive principal minors (PM).

The results of Cottle were later generalized by Megiddo [3] who
went even further in [4] and examined the general nonlinear parametric

*This research was financially supported by the Research Department of the
Tecnolégico de Monterrey, Campus Monterrey, and by the SEP-CONACYT project
CB-2013-01-221676, Mexico. The second author was also supported by the PAICYT
project No. CE250-09 and by the SEP-CONACYT project CB-2009-01-127691.
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complementarity problem (NPCP) in the form: Given a continuous
mapping g : Rfrl — R™, solve a family {g(;¢): ¢ >0} of non-
parametric CPs.

Both Maier [1] and Cottle [2] claimed that the monotonicity property
in linear parametric complementarity problems (LPCP) is often desired
in the context of elastoplastic structures. Cottle also suggested that
a generalization of his results “would find applications in structural
mechanics as well as economic equilibrium theory". All that was later
confirmed in numerous papers (see, e.g., Kostreva [5], Ferris and Pang
[6], to mention only few).

In contrast to the original problem’s formulation by Maier, Cottle,
and Megiddo, who tried to find not only sufficient but also necessary
conditions of the monotonicity of the solutions of the corresponding
parametric complementarity problems with respect to the parameters,
we are to consider and examine a bit simpler task. Namely, we are
interested in finding only sufficient conditions of the latter monotonicity,
and because of that, we study a more general problem than that
examined in [1-6].

Now consider a nonlinear complementarity problem with parameters:
Given a parameter vector u = (u1, ug, ..., Uy ) € R™, find a point z € R™
such that

x>0, Az + Bu+ ¢(z,u) > 0, and

o (Az + Bu + ¢(x,u)) = 0; (2)

here A, B are given n xn and n x m real matrices, and ¢ : R x R™ — R"
is a nonlinear function.

In order not to restrict our research to the case of equal numbers
of decision variables and parameters, we will use not the concept of
monotonicity defined by the inner product of the vector-function and
the vector of parameters, but the component-wise monotonicity notion
(cf., e.g., [7]) given below.

Definition 1. A mapping f : R" —
R™ is called monotone [antitone] if
x1 > x2 implies f(x1) > f(x2) [f(z1) < f(z2)]. (We say that
a>bifa; > b;, i = 1,...,n, i.e., the partial order relation in vector
spaces is involved).

Now the following result can be established. The definition and
important properties of M-matrices can be found, e.g., in [8].

Theorem 1. Let A be a positive definite M-matriz, B a non-positive
one, and p(x,u) a differentiable function monotone by x and antitone
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with respect to u. Moreover, suppose ¢, = ¢l (x,u) to be a positive
definite M-matriz for each x and u. Then the solution x = z(u) to
problem (2) is monotone by u.

The symmetrical result concerning the antitone behavior of solutions
of the complementarity problem (2) is obtained readily by the theorem
below.

Theorem 2. Let A be a positive definite M-matriz, B a non-negative
one, and o(x,u) a differentiable function monotone by both x and u.
Moreover, suppose ¢!, = ¢! (z,u) to be a positive definite M-matriz for
each x and u. Then the solution x = x(u) to problem (2) is antitone by
U.

Extensions of the above-mentioned results to implicit
complementarity problems can be found in [9]. The monotonicity
of solutions to parametric variational inequalities, both in finite- and
infinite-dimensional spaces, will be the object of the authors’ future
research.
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Complexity estimates for one variant of the
branch-and-bound algorithm for the subset
sum problem*

R.M. Kolpakov, M.A. Posypkin, and Si Thu Thant Sin
Lomonosov MSU, Dorodnicyn Computing Centre, FRC CSC RAS,
Moscow, Russia

The subset sum problem is a particular case of the knapsack problem
[1] stated as follows:

f(z) =31, wiz; — max,
Y wiwi < C, (1)
x; € {0, 1},i S 1,—77,

Despite its simple formulation the problem is NP-hard. One of the most
efficient methods for resolution of this problem is the Branch-and-Bound
method with various elimination rules [1,2]. Though it is well known
that advanced Branch-and-Bound methods can efficiently cope with hard
subset sum instances the complexity theory was not enough elaborated.
We consider the Branch-and-Bound method with the dominance
relation used to eliminate sub-problems. Let P is a sub-problem of the
problem (1) obtained by fixing variables x1,...,z.(py, 7(P) € 0,n:

fx) =37 wir; — max,
E?:l Wi Xy S 07 (2)
x; =0;(P),i € 1,7(P)

z; €{0,1},i € 7(P) + 1,n.
Let us introduce the following designations

C(P) =C— EZ:U;) Hi(P)wm

k(P) = {maxk : k€ 0,n—7(P), L)L wi < C(P)},
E(P) ={maxk:ke0,n—7(P),>" .. w <C(P)},

*This research is supported by RFBR, project 15-07-03102 and by Ministry of
Science and Education of Republic of Kazakhstan, project 0115PK00554.
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If wy > wo > --- > w, then obviously k(P) < k(P). The sub-problem P
is said to fulfill the cardinality elimination rule if E(P) = k(P). In this
case the optimal solution of P is readily available:

0:(P), ifi € 1,7(P),

z;(P) =41 ifier(P)+1,7+k(P), (3)
0, if i € 7(P) + k(P) + 1,n.

Therefore the sub-problem can be excluded from the further search after
the incumbent solution is updated.

We say that the sub-problem P; is equivalent to the problem P,
if 7(P1) = 7(P2) and C(P1) = C(P2). It is clear that equivalent sub-
problems have the same objective value of the optimal solution and
therefore only one equivalent sub-problems should be saved during the
search process (the other one is eliminated). The introduced elimination
rule is a particular case of the more general dominance relation for the
knapsack problem [1].

After sorting the items in the non-increasing order, i.e. w; >
wg > -+ > wy, the algorithm follows the standard branch-and-bound
scheme. On each iteration it takes a sub-problem from the list, applies
elimination rules and if the sub-problem is not eliminated it splits the
sub-problem into smaller sub-problems by fixing the next free (non-fixed)
variable. The complezity of the problem (1) is defined as the number of
sub-problems considered by the algorithm described above during the
resolution process.

The complexity bound for this problem is given by the following
theorem.

Theorem. If n > 3 the worst case complexity for the problem (1) is
2(2) — 1

It is worth to note that the worst case complexity is reduced
approximately twice by applying the cardinality elimination rule
instead of the standard elimination rule while using of the equivalence
elimination rule does not affect the upper bound.
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Selective bi-coordinate variations for
optimization problems with simplex

constraints®

1.V. Konnov
Kazan Federal University, Kazan, Russia

We consider a special class of optimization problems, where a goal
function f is supposed to be smooth and a feasible set D is defined by
simplex constraints. We write this problem as

min — f(x), (1)

where D = {x € R | (e,z) = b}, b is a fixed (non-negative) number, e
is the vector of units, R’} denotes the non-negative orthant in R".

It is well known that many problems of optimal allocation of some
resource within a system reduce to (1); see e.g. [1, 2]. In particular,
they often arise in information and telecommunication networks; see e.g.
[3]. Besides, similar optimization problems arise in machine learning,
signal, speech and image recognition and processing, and related fields;
see e.g. [4, 5]. These problems have huge dimensionality, their data may
be very inexact and incomplete, but they do not require high accuracy
of solutions. For this reason, we are interested in developing low cost
iterative methods, which keep the convergence properties of the usual
ones, but reduce the total computational expenses. Due to the simplex
type constraints, the bi-coordinate iterative methods may appear rather
efficient here. The first bi-coordinate method was proposed in [6]. The
detailed description of its recent versions is given in [7].

In this work, we develop a selective bi-coordinate method with special
threshold control and tolerances, which follows the approach suggested
in [8]. It should be noted that this method can be treated as a self-
adjustment process for attaining an equilibrium state of a general closed
economic system; see [8, 9].

A point Z is called a stationary point of (1) if

EGDv VZaJGI:{lvan}vl#]a Zi >0 = gz(j) ég](:f)v

where g;(z) = %ff). Each solution of problem (1) is a stationary point,

the reverse assertion is true if f is pseudoconvex.

*This research is supported by the RFBR grant, project No. 16-01-00109a.
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We now describe the iterative method for finding stationary points.
Let I.(x) ={i € I | ©; > €}, Z+ denote the set of non-negative integers.

Method (BCV). Initialization: Choose a point z° € D and
sequences {&;} N\, 0, {e;} (0. Set [ = 1.
Basic cycle: Step 0: Set k =0, 20 = z!~1.
Step 1: Choose an index i € I, (z*) such that g;(z*) — g;(a*) > &, for
some j € I, set d¥ = —1, dé? =1, d¥ = 0 for other indices s # i, j, and

go to Step 2. Otherwise set z! = 2¥, | = [+ 1 and go to Step 0. (Restart)
Step 2: Find m as the smallest number in Z, such that

Fla® +0mapd®) < f(a) + pOmaf(f (2%), d"), (2)

set A\ = 0k o+l = 2F + \pd¥, k =k + 1 and go to Step 1.

The convergence properties of the method are formulated as follows.

Theorem 1. (a) For each stage [, the number of changes of index &
in the basic cycle is finite;
(b) the sequence {z'} has limit points and all these points are stationary
for (1);
(c) if f is pseudoconvex, then lim;_,, f(2!) = f*, and all the limit points
of {2!} are solutions of (1).

The above descent method admits various modifications. Firstly, we
can take the exact one-dimensional minimization rule instead of the
current Armijo rule in (2). Secondly, if the function f is convex, we
can replace (2) with the following;:

(f'(@® +0majc),d) < By (f (2*), d¥),

where only two selected coordinates of d* are nonzero. Next, if the
gradient of the function f possesses even partial Lipschitz continuity
properties, we can simply take the fixed stepsize.

Moreover, given a starting point z° and a number a > 0, we can
evaluate the complexity of the method in this case. It is defined as
the total number of iterations at I(a) stages such that [(«) is the
maximal number ! with f(z!) — f* > a and denoted by N(a), where
fr= ;22 f(x). If the function f is convex with Lipschitz continuous

partial gradients, then the method attains the complexity estimate
N(a) = O(1/a); see [10].
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In computational tests, (BCV) showed rather rapid convergence in
comparison with the known methods such as the conditional gradient
method and bi-coordinate descent methods with random and marginal
estimate rules for selection of coordinate indices. In particular, it reduces
the total volume of computational expenses in comparison with the
conditional gradient method since it does not require calculations of
all the partial derivatives at each iteration in general. At the same
time, (BCV) is suitable for parallel and distributed (multi-agent)
computations.

The method admits extensions to the more general classes of
problems, which involve both lower and upper bounds for variables,
besides, the equality constraint (e, x) = b can be replaced by (a,z) = b,
where a is an arbitrary vector in R™ and b is an arbitrary number.
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Normative dynamic analysis of a
heterogeneous computing system

Yu.E. Malachenko and I.A. Nazarova
Dorodnicyn Computing Centre, Federal Research Center “Computer
Science and Control” of Russian Academy of Sciences, Moscow, Russia

Consider the heterogeneous computer systems (CS) that processes
a flow of various computationally intensive tasks under uncertainty
(CITUs). To improve performance, a CS has specialized units that
considerably speed-up of some procedures by compare with a general-
purpose processor. Different types of units completed the same task in
a different amount of time; moreover, some can execute only specific
types of algorithms and are applicable to a limited class of tasks. To
use the CS resources more efficiently and satisfy the principle of equal
significance of tasks when the CITUs are scheduled, optimization models
and approaches are used (see [1-3]) that form a hardware and software
environment. In this report, we study the operation of a heterogeneous
computer system from the viewpoint of its performance. Typically,
performance is defined as the amount of computational work performed
in a unit of time or during a time interval.

The number and performance of processing units in a heterogeneous
CS may change with time; moreover, new versions of software and
control subsystems can drastically change the amount and the whole
set of works. Hence, it is the problem of analysis of the CS functional
capabilities dynamics under the conditions of changes in the workability
of elements due to failures.

In this report make use a multiparameter model (MP model) to
analyze the dynamics of a CS performance based on deriving guaranteed
bounds on the amount of work that can be accomplished provided that
the resources are allocated efficiently. The input task flow is intensive,
and the CS can complete only a part of these tasks. As the characteristic
of the CS functional capabilities make use of the vector of simultaneously
executed tasks. The components of this vector correspond to the amount
of computational work that can be jointly completed in one operational
window. Each feasible allocation of available resources is assigned a
vector consisting of the set of executed tasks, and the points at the



48 Optimization methods

boundary of this set determine the extreme functional capabilities of the
CS. To investigate these boundaries and vectors, single-task operational
modes are considered in which the system processes only a single type
of tasks.

The maximum functional capabilities of the CS are determined by
solving the following multiple criteria optimization problem: maximize
the vector of executed tasks on the set of feasible resource allocations.
The values of the maximum amount of work that can be done in the
single-task mode of task processing are used as weighting coefficients in
the multiple criteria optimization of resource allocation. The maximum
functional capabilities are described by a subset of Pareto optimal vectors
of executed tasks (none of the components of such a vector can be
increased without decreasing another component).

For a fully operational CS working at its maximum performance,
the concept of the initial normal state is introduced. The normative
functional characteristics are determined by the Pareto optimal solution
to the problem for the initial normal state of the system, which is
determined by the weighting coefficients obtained for the single-task
operational modes of the system.

To find a dynamic estimate of the CS state in the beginning of each
operational window taking into account the actual state of resources, the
current limiting functional characteristics are computed.

At certain check time point, the current maximum values of the
performance indicators are compared with the normative ones. A two-
dimensional diagram of relative deviations is constructed, which makes
it possible to track the dynamics of performance indicator changes.

The constructed charts illustrate variations in the limiting functional
characteristics when the technical characteristics of the system elements
vary. The analysis of the charts obtained over a long time period makes it
possible to reliably estimate the functional capabilities of the system in
various operational states (hardware failures) when the system processes
tasks of different types.
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On methods for solving quasi variational
inequalities
M. Ja¢imovi¢ and N. Mijajlovié
University of Montenegro, Podgorica, Montenegro

1. Introduction. Consider the following quasi variational inequality:
find z,. € C(x.) such that

(F(z4),y — ) > 0 Yy € C(z4), (1)

where C' : H — 2 is set-valued mapping with nonempty convex and
closed set C'(x) C H for all = from Hilbert space H.

Note that the difficulty of problems with quasi variational inequalities
is related to the fact that one must simultaneously solve a variational
inequality and calculate a fixed point of a set-valued mapping. This
explains why the literature on solution methods for quasi variational
inequalities is not too extensive. Consequently, there are numerous open
questions.

We will suppose that the operator F satisfies the Lipschitz condition
with the positive constant L and strong monotonicity with positive
constant p.

The theorems about existence of solutions show a notable difference
between variational and quasi variational inequalities. For example, if F’
is strongly monotone and Lipschitz continuous on closed and convex set,
then variational inequality has a unique solution. On the other hand,
for quasi variational inequalities it is necessary to add a condition (see

[1,2]):

[Tl -~ Mol < Mo —yll, VagzcH A<b ()
where I [2] is the projection of point z onto the set C.

In many important applications the convex valued set C(z) can be
written as C(z) = c¢(x) + Co, where Cy is a closed convex set and ¢ :
H — H is a Lipschitz continuous mapping with constant A > 0. In this
case, assumption (2) holds with the same value of A (see [2]).
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Example 1. Mapping F(x) = x,z € R is strongly monotone and
Lipshitz continuous with constants g = L = 1. Then, for C(z) = {z}, or
C(x) = [z,x + 1] quasi variational inequality: find x. € C(z.) such that
(F(zy),y—x4) >0 Yy € C(x.), has infinitely many solutions (the set of
solutions is R). If C(z) = [x — 1, 2] the set of solutions of this inequality
is empty.

Example 2. If

[1/2,1], if z€[0,1/2)
Cx)=4{ [0,1, if 2=1/2
0,1/2], if =€ (1/2,1]

mapping C' has a unique fixed point z, = 1/2, but it is not a solution of
(1).

2. Continuous methods. We will consider the differential equation
2 (8) + () = Lo ) — at)Fa()], t>0,2(0) =20, (3)

where z( is a given initial point in H and « > 0 is a parameter of
the method. Then, solution . of quasi variational inequality (1) is a
stationary point of system (3).

Theorem 1. Let operator F' : H — H be strongly monotone (with
constant @ > 0) and Lipshitz continuous (with constant L > 0), set-
valued mapping C : H — 25 with nonempty, closed and convex values
C(xr) € H Yz € H satisfies condition (2) and parameter o(t) €
C([0,+00) satisfies the following conditions: 0 < ap < a(t) < aq, YVt >

v ”LL;(”‘*V) o < rEy ”LLL;(”‘*V). Then, for all

0, where ag > 2 T 5
xo € H, the trajectory z(t), t > 0 defined by (3) converges to the unique
solution x, € C(x.) of problem (1) with the following rate:

l2(t) = 2| < e 2 zg — 2],

2
where ag = 1 — ()\—i— \/1 —2041u+0z(2)L2) .

Continuous proximal method for quasi variational inequalities was
considered in [5].
3. Iterative methods. Some iterative versions of the gradient
projection method for convex minimization, variational and quasi
variational inequalities were investigated in [2,3]. Here, we describe
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iterative proximal method, which can be understood as an implicit
variant of the gradient projection method. Let x¢ € Cy be an arbitrary
initial approximation of the solution. Suppose that, for a certain k£ > 0,
the approximation zy € C(zg—_1) has already been determined. Then the
set C(xy) is defined. The approximation z41 € C(xy) is determined as
a solution to the following variational inequality: find xj1 for which

(p+1 — K + aF (Tpy1), 2 — g1 + c(zg)) >0, Vz € Cp. (4)

where o > 0. Note that this inequality is uniquely solvable. Method is
described. In the theorem below, we state conditions for the convergence
of this method and estimate the convergence rate.

Theorem 2. Let the following assumptions be fulfilled:

(1) Co C H is a convex closed subset of the Hilbert space H, ¢ : H —
H is a Lipschitz continuous operator with the constant I > 0 and C :
H — 28 is a set-valued mapping of the form C(x) = c(x) + Cy, z € H;

(2) The operator F': H — H is strongly monotone with the constant
w > 0 and Lipshitz continuous with the constant L > 0;

(8) The parameter « and the constants I, L, and p satisfy the condi-
tions | < @%, |a— ﬁ‘ < fz\/p? —22L%. Then, for every initial
approxzimation xo € Coy, the sequence {xy} defined by (4) converges to
the unique solution x, € C(x.) of problem (1). Moreover, the following
estimate for the convergence rate is valid:

/ 1+ 202
[Ze41 — 2] < ¢"(@)[|wo — w.||, where q(a) = m-
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Optimization methods and software for
seeking a Nash equilibrium in hexamatrix
games”

A.V. Orlov and A.S. Strekalovsky
Matrosov Institute for System Dynamics and Control Theory of SB
RAS, Irkutsk, Russia

Consider the following polymatrix game of three players (hexamatrix
game) with mixed strategies:
Fi(z,y,2) & (z, Ajy + Azz) T max, = € S,
FQ(xa Y, Z) £ <y7 le + BQZ> T max, y € Snv
Yy
Fg(l‘, Y, Z) é <Za Cll‘ + 02y> T max, 2z S Sl7

P
where S, = {(u1,...,up)T € R |u; >0, Y u; =1}, p=m,n,l
i=1

Further consider the following nonconvex optimization problem
(0 £ (2,9, 2,0, 8,7)):

®(0) £ (v, A1y + Asz) + (y, Bix + Baz) + (2, C1z + Coy)—
—a—f—yTmax, 0 € D= {(z,y,20a,B7) € R+

| x € S, Y€ Sn, 2€8;, Ay+ Az < aen,
Bz + Byz < fen, Cix+ Coy < ver},

(P)

where e, = (1,1,...,1) € RP,p = m,n, .

The search for a global solution to Problem (P) is equivalent to a
finding Nash equilibria in hexamatrix game [1] constructed with matrices
A= (Al,AQ), B = (Bl,BQ), and C' = (01,02).

Theorem. [1] A point (z*,y*,z*) is a Nash equilibrium point in
the hexamatriz game T'(A, B,C) if and only if it is a part of a global
solution o, = (z*,y*, 2", (s, Be, V) € R™THH3 of Problem (P). At
the same time, the numbers a., B«, and v« are the payoffs of the first,
the second, and the third players, respectively, in the game T'(A, B,C):

*This research is supported by the Russian Science Foundation (project
No. 15-11-20015).
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ax = vi(x*,y*,2Y), Be = wva(x*,y*,2), v = wvs(x*,y*, 2%). In
addition, an optimal value V(P) of Problem (P) is equal to zero:
V(P) = ®(os) =0.

In order to solve Problem (P), we are using an approach based on
Global Search Theory [2]. According to this theory the Global Search
consists of two principal stages: 1) a local search, which takes into
account the structure of the problem under scrutiny; 2) the procedures
based on Global Optimality Conditions (GOC) [2], which allow to
improve the point provided by the local search method, in other words,
to escape a local pit.

To implement a local search in Problem (P), we are applying the
ideas, first, of splitting variables in several groups, and, after that, of
consecutive solving of specially constructed LP problems with respect
to the groups of variables. These ideas have previously demonstrated its
efficiency in bimatrix games [3], bilinear programming problems [3], and
bilevel problems [4].

In order to do it, consider the following LP problems:

fi@, B) = (x, (A1 + B Jv + (A2 + Cf )w) — B 1 max, }
(

z,B)
(z,8) € X(v,w,7) = {(x,8) |z € Sp,
Bix — Be, < —Baw, Ciz < 7ye; — Cov};
(LP(v, w,7))

f2(y,7) £ {y, (B1 + AT )u + (B2 + CT)w) — v 1 max, }
u

(y,7)
(y,7) € Y(u,w, &) = {(y,7) | y € Sn,
Ay < aen, — Agw, Coy —ver < —Chrul;

(z,0)
(z.0) € Z(u,v,8) £ {(z,0) | 2 € 8,

(
f3(z,0) £ (z,(C1 + AD)u + (Co + B )v) — a1 max, }

Aoz — aey, < —Ajv, Boz < fle, — Biu}.
_ (‘sz(uvvvﬁ))
Here (u,v,w, @, 3,7) € D is a feasible point in Problem (P).
The local search method based on a consecutive solving of these
LPs converges to the point & £ (&,9, 2, d,B,ﬁ), which is satisfying the
following inequalities:
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(5) > O(i, 9, 2,0, B,4) V(z,0) € Z(2,9, ).

Such a point point can be called a partially global solution of the
problem (P) (with respect to pairs (x, 8), (v,7), and (z, @)).

For a global search procedure, first, we need to construct the explicit
representation of the objective function ® as a difference of two convex
functions, for example, as follows:

@(x,y,z,a,ﬁ,v) = h(xvyaz) - g(xvyazaaaﬁa’}/)v

1
By, 2) = 7 (o + Argll? + o + a2l + | Bra + yll2 + lly + Boz|*+
1
Gz + 22+ 1Cay + 2117),  9(0) = 7 (Il — Ayl + [z — x>+
1 Baz =yl + ly = BozlP? + [ Cuw — 21> + | Coy — 2[*) +a+ B+,

Therefore, the global search method in Problem (P) is based on
GOC for d.c. maximization problems (see [2-4]). According to [2-4], the
global search procedure consists of several stages such as constructing an
approximation of the level surface of the convex function h(x,y, z), which
generates a basic nonconvexity of the problem (P), solving the linearized
convex problem, an implementing of additional local search, verifying
GOC etc. As a result, taking into account the features of Problem (P)
and using all the stages of the global search above mentioned, we have
constructed and implemented the Global Search Algorithm in the hexa-
matrix games.

The software, implementing elaborated methods of local and global
search has been developed in MATLAB 7.11.0.584 R2010b. As for auxi-
liary LP problems and convex quadratic problems, they have been solved
by corresponding MATLAB subroutines of famous software package IBM
CPLEX (v. 12.62). This package shows the considerable advantages with
respect to standard MATLAB subroutines "linprog" and "quadprog".

The efficiency of created software is demonstrated by the results of
computational solving of the large amount of test hexamatrix games.
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Stability of a model predictive impulsive
control scheme*

F.L. Pereira
SYSTEC, Faculty of Engineering, Porto University, Porto, Portugal

This article concerns the stability of an optimal control based
receding horizon scheme - often referred to by Model Predictive
Control (MPC) - for dynamic impulsive control systems. An optimizing
framework for state feedback control of the dynamic system emerges
from the articulation of a discrete-time state sampling strategy with the
control synthesis via optimality conditions, notably, necessary conditions
of optimality in the form of a Maximum Principle (see [1,2], and,
then, appropriately sliding the time horizon. Unlike [3], this is a
practical approach that combines optimality conditions with state-
variable sampling in order to take into account perturbations that
affect the behavior of real-world systems, while mitigating the huge
computational burden typically associated with the on-line computation
of optimal feedback control, which, in general, requires solving a certain
Hamilton-Jacobi-Bellman partial differential equation, [4]. There is not
only an abundant body of literature on MPC schemes for conventional
control - systems with absolutely continuous trajectories and references
therein, but also, it has been widely used by the control practitioners for
a significant period of time now, [5].

This state-of-affairs strongly contrasts with the one for impulsive
control systems, that is, dynamic systems whose control space is enlarged
to contain measures and, thus, the associated trajectories are merely of
bounded variation, and, in particular, may have jumps. In particular, we
consider systems of the form

dx = f(t,z,u)dt + G(t,z,u)dd

with (2(0),z(T)) € Cy x Cp, uw € U, and ¥ € Z, where f : [0,T] x R™ x
R™ — R", and G : [0, T] x R® x R™ — R™*¥ are given mappings, Cp and

*This research is supported by FCT grant SYSTEC R&D Unit ref.
UID/EEA/00147/2013.
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Cr are compact sets, U = {u € Lo ([0, T];R™) : u(t) € Q}, with compact
Q C R™, T is the impulsive control constraint set, and ¢ = (p, {ur, v, })
is the impulsive control which is specified by two components: a Borel
measure p € K with range in convex, closed and pointed cone K in R,
and a certain pair of functions {u,,v;} defined on the support of the
atomic component of u. For details, see [6,7].
Intuitively, the need to adopt an impulsive control framework arises
when the control systems exhibits very fast and very slow dynamics
abstraction and the optimal control problem of interest is such that
these two components of the dynamics can not be dealt with separately.
There are several concepts of impulsive control and impulsive trajectories
in the literature. We consider the ones defined in [6] which, arguably, are
among the most sophisticated ones in that it is well suited to capture
the requirements of important classes of engineering systems, [7].
The MPC scheme for the this class of impulsive control systems
proposed here is a refinement of the one described in Chapter 9 (An
Optimization-based Framework for Impulsive Control Systems) in [5]
and it enables the construction of a state feedback control law by jointly
computing sequences of
e sampling instants 7 := {¢;};>¢ in [0,400) with inter-sampling
times §; > 0 such that t; 11 = t; + d; for all i > 0,

e open loop optimal controls on [t;,t; + T] by solving the optimal
control problems P(t;,x;,T) at each sampling instant ¢; € 7 by
using the current measure of the state variable x(t;) = x;,

where
t;+T
Py, 25, T) Minimize W (t; + T, x(t: +T)) + / Lae(s, 2(5), u(s))ds

ti

+/ Lg(s,z(s),u(s))dd(s)

[ti,ti+T)

subject to  dx(t) = f(t,z(t), u(t))dt + G(t, z(¢), u(t))dd(t)
Vit € [t;,t; + T,

(NS u‘[ti,ti-‘rT]) ’19 S I‘[t,’,,ti-}-T]) x(tl + T) S S,

The proposed MPC scheme involves a form of receding horizon that
takes into account the specificities of the impulsive control, is a follows:

1. Initialization. Set parameters, specify initial data, and iteration
counter ¢ = 0.

2. Sample the current state of the plant z(t;) = ;.
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3. Solve problem P(t;,z;,T) to obtain the open-loop optimal
conventional control @' € U, +,+7) and impulsive control V€
Tt; t:+1)- Whenever f*({t}) # 0 (ie., if the optimal control
measure has an atom, including the time endpoints ¢; and ¢; + T),
then, the optimal arc joining the associated trajectory endpoints
has to be defined by computing the optimal pair of functions
(@i(-),vi(+)) defined on the associated emerging interval [t,t +
[t ({tH)]]-

4. Determination of the next sampling instant. This is the earliest
time in which either a time interval of duration ¢ elapses, or an
atom of /i’ occurs. We remark that the case of 7 = 0 makes sense
when the perturbations affecting the system are extremely fast and
an abstract “set-valued sampling rate” is considered.

5. Apply to the plant the control pair @' and ©* during the interval
[ti, t;+0;], being the control strategy values computed for ¢ > ;+6;
discarded.

6. Now the optimization time horizon slides, i.e., we consider ¢;11 =
t; + 0;, we let i = i 4+ 1 and repeat the procedure from step 2.

Here, the closed set S C R", and the mappings W : [t;,t;+T] xR™ —

R, Lac : [t ti+T]xR*xR™ — Rand Ly : [t;, t;+T]x R xR™ — R* are
chosen in order to ensure the stability of the MPC scheme. Under mild
assumption on the data of the impulsive control system, a Lyapunov like
asymptotic stability of this MPC scheme are proved in the context of
nonsmooth context, [2,8], and by making use of auxiliary extension of
invariance results, [2], for impulsive systems.

References

1. Arutyunov A. V. Optimality Conditions: Abnormal and
Degenerate Problems. Kluwer Academic Publishers, 2000.

2. Vinter R. B. Optimal Control. Birkhauser Boston, 2000.

3. Pereira F., Silva G. N. Lyapunov stability of measure driven
impulsive systems // Differential Equations. 2004. V. 40. P. 1122—
1130

4. Fraga S. L., Pereira F. Hamilton-Jacobi-Bellman Equation and
Feedback Synthesis for Impulsive Control // IEEE Trans. on
Autom. Control. 2012. V. 57. P. 244-249

5. Olaru S., A. Grancharova A., Pereira F. (ed.). Developments in
Model-Based Optimization and Control Distributed Control and
Industrial Applications. Lect Notes in Control and Inf. Sci. 464,
Springer, 2016.



58 Optimization methods

6. Arutyunov A. V., Karamzin D. Y., Pereira F. Pontryagin’s
maximum principle for constrained impulsive control problem //
Nonlin. Anal.-Theory, Method & Appl. 2012. V. 75. P. 1045—1057

7. Arutyunov A. V., Karamzin D. Y., Pereira F. Impulsive Control
Problems with State Constraints: R.V. Gamkrelidze Approach to
the Necessary Optimality Conditions // J. of Optim Theory &
Appl. 2014. V. 166. N. 2. P. 440459

8. Mordukhovich B. S. Variational Analysis and Generalized
Differentiation, I: Basic Theory, II: Applications. Springer, Berlin,
2006.

On smooth approximation of convex sets and
convex functions*

L.N. Polyakova
Saint Petersburg State University, Saint Petersburg, Russia

1. Smooth approximations of convex sets.

Let a set X C R” be closed and convex and x € X. A closed convex
set is called smooth if at each of its boundary point there exists a unique
support hyperplane.

A set

N(X,z)={geR"| (g,z2—2) <0 VzeX }

is called the normal cone to X at a point x € X [1]. N(X,x) is closed
and convex.

Thus if the normal cone at each boundary point z € X consists of a
single ray then the set X is smooth.

Let X C R™ be closed and convex set and do not coincide with R™.
Consider the closed convex set

Z. =X +¢eB1(0,), e >0,

where
B, (zg) = {x € R" | ||z — zo|| < r}.

Hereinafter, ||z|| = \/(x,x) is the Euclidean norm. Note that Z. is the
set with nonempty interior under every positive €.

*This research is supported by the Saint Petersburg State University grant
9.38.205.2014.
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Theorem 1.The normal cone to Z. at every boundary point zo €
bd (Z.) consists of a single ray.

2. Smooth approximations of convex functions.

Let fi1, fo : R® = RU {+0o0} be convex functions.

A function
f(x) = inf {fi(z1) + fo(z2)} = inf {fi(z1)+ fo(z —21)}
T +10 =12 z1€R
x1,T € R™

is called infimal convolution of two functions f; and f; and is denoted
by
f@) = (fr @ f2) ().

The function f is convex. The operation of taking the infimal convolution
of two convex functions is commutative and associative.
Fix € > 0. Define a function

_ 2 _
oy ={ VR Ss er

+o0, llz]| > e,

Note that
tr(v) =ev/14 (v,v), veR",

where ¢} is the conjugate function of ¢..
Let f: R™ — R be a convex function and D C R" be closed convex
set. Denote

X={lz,y] eR" xR | p> f(z), z€D}.
Construct families of smooth closed convex sets {Z.}, {D.},
Ze =X +¢eBy(0n41) CR™, >0,
D. =D +¢eBi(0,) C R",

and a family of convex functions {f.},

o) = { infp, [z,u] € Z:

+00, B OCTAJIbHBIX CJIy4YadaX.

It is not difficult to note that dom f. = D. and for every fixed £ > 0 the
graph of fe is a lower envelope of the set X..
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Fixe > 0. Let z € D. Consider a family of convex functions {¢.(x, z)}

pe(x,2) = f(2) + te(2, 2),
where

400, in other cases.

/22— e — 22
te(x,z)z{ Ve =z —z||?, z € alz),
Here
ac(z) ={z €R™ | |lz —z|]|<e } C D..

It’s obvious that

dom ¢, (-, 2) = a:(z), U as(z) = D..
z€D

Denote H.(z) = epi @<(-, 2). Consider also functions
pe(z) = inf e (z, 2)

and their epigraphs H. = epi ..
Theorem 2. The following relations

1 fe(x) = (f @ t)(x) = pe(2),
2. dom f€: dom f1+Be(On)v epi f€: epi f1+B6(0n+1)a

where
Bo(0n) = {z € R" | |lal e}, BeOns1) = {z € R™ | [laf| <},

hold.

Theorem 3. The function f. is continuously differentiable at every
interior point of the set D, for each fized € > 0.

Theorem 4. The set epi f- is smooth for each fixed £ > 0.

Denote by M a set of minimizers of the function f on the set D, and
denote by M. a set of minimizers of the function f. on the set D.. The
case in which these sets are empty is not excluded.

Theorem 5.

1. The equality M = M. holds.
2. If M is a nonempty then
fe(z)=f(z")—e Vz"eM.
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A two-step proximal algorithm of solving the
problem of equilibrium programming

V.V. Semenov
Kiev National Taras Shevchenko University, Kiev, Ukraine

Let C' be a nonempty closed convex subset of a real Hilbert space H
and F : C x C — R be a bifunction with F(z,z) = 0 for all z € C.
Consider the following equilibrium problem in the sense of Blum and
Oettli [1, 2]:

find x € C such that F(z,y) >0 VyeC.

We propose a new iterative two-step proximal algorithm for solving
the problem of equilibrium programming in a Hilbert space. This method
is a result of extension of L. D. Popov’s modification of Arrow-Hurwicz
scheme for approximation of saddle points of convex-concave functions
[3, 4]. More precisely, we propose and analyse the following algorithm:
for x1, y1 € C generate the sequences z,, y, € C with the iterative
scheme

{ Tpy1 € ProXyp(y, )Tn = Argming o {/\F(yna y) + %”y - anQ} )
Ynt1 € PIOXxp(y, ) Tnt1 = AWl e AN (Yn, y) + 5lly — zns1[*}

where A > 0.

The convergence of the algorithm is proved under the assumption
that the solution exists and the bifunction is pseudo-monotone and
Lipschitz-type.
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Global optimality conditions for d.c.
programming®
A.S. Strekalovsky

Matrosov Institute for System Dynamics and Control Theory
of SB RAS, Irkutsk, Russia

Consider the optimization problem:

(P):

fo(x) L min, z €5 c R, } "

filz) <0, iel:={1,...,m},

where all f; = g;(x) — hi(x), i € IU{0} with smooth convex functions
Let introduce the l-penalty function [1]-[7]

W(x) := max{0, f1(z),..., fm(z)} = max{0, fi(z),s € I}.  (2)
Further, consider the penalized problem as follows (o > 0)
(Py): Oo(2) := fo(z) + oW (z) | min, =€ S. (3)

As well-known [1]-[7], if z € Sol(Ps), and z € D :={zx € S: f;i(x) <0,
i € I}, then z € Sol(P). In addition, if z € Sol(P), then under supple-
mentary conditions [2, 3, 5, 7] for some o, > 0, o, >|| A; ||1 (where A,
is the KKT-multiplier corresponding to z), the inclusion z € Sol(P,)
holds. Moreover [6], Sol(P) = Sol(P,), so that Problems (P) and (P,)
turn out to be equivalent Vo > o,.

It can be readily seen that the penalized function O,(-) is a d.c.
function, since the functions f;(-), ¢ € I U {0}, are as such. Actually,
since o > 0,

O, (2) = Go(z) — Ho (), (4)

*This research is supported by the Russian Science Foundation (grant 15-11-
20015).
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Hy(x) :=ho(x) + 0 Y _ hi(z) (5)
el
Go(z) := Og(x) + Hy(z) =
go(x )—i—amax{i_n: hi(x); r?&x[gi(x)—i— Z#:h@(x)]}, (6)

it is clear that G,(-) and H -) are convex functions.
For z € S denote ¢ := ©,(2).
Theorem 1. It z € Sol(’P,,), then

v(yvﬁ) : Ha(y) = B - Cv (7)

the following inequality holds

A/\

Go(z) = B> (Vho(y) + 0> Vhi(y),x —y) V€S, (8)

i€l

#

So, Theorem 1 reduces nonconvex (d.c.) Problem (P,) to a solving
the family of convex linearized problems of the form

(PoLw)):  Gol) — (VH,(y).2) Lmin, z€8, )

depending on the parameters (y, 8) fulfilling the equation (7).
If for such a pair (y,ﬁ) and some u € S (u may be a solution to
(P-L(y))) the inequality (8) is violated, i.e.

Go(u) < B+ (VHo(y),u—y), (10)
then due to convexity of H,(-) we obtain with the help of (7) that
Go(u) < B+ Hy(u) — Hy(y) = Ho(u) +C.

The latter implies that ©,(u) = G, (u) — Hy(u) < ¢ := ©,(2), so that
u € S is better that z, i.e. z ¢ (P,).

It means that Global Optimality Conditions (7), (8) of Theorem 1
possesses the constructive (algorithmic) property allowing to construct
local and global search methods for solving Problem (P,) [8, 9].

In particular, they enable us to escape a local pit of (P, ) and to reach
a global solution. The question arise about the existence of such a tuple
(y, B,u). the answer is given by following result.
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Theorem 2. Let for a point z € S there exists v € IR™ such that
(H): O, (v) > O,(2).

If z not a solution to Problem (P,), then one can find a pair
(y,B) € R™"L, satisfying (7), and a point u € S such that the inequality
(10) holds. #

Now let us set y = z in (9). Then from (8) it follows that

8 =0,(2)+ Hy(z) = Gy (2).

Furthermore, from (9) we derive
Gy(x) — Gy(2) > (VH,(2),x —z) x €S,
that yields that z is a solution to the convex linearized problem

(PoL(=)):  Gola) = (VHy(2),2) b min, @ €S,

As well-known [1]-[3], [6], due to the presentation (6) the latter problem
amounts to the next one

go(x) — (VH,(2),z) + ot | ?liI;, x€S, teR,
x,t

Y hi(@) <t gi(e)+ Y hi(x) <t, i€l (11)
i€l j#i
Moreover, the KKT-conditions to Problem (11) provide for KKT-condi-
tions at z for the original Problem (P).
So, the Global Optimality Conditions (7), (8) of Theorem 1 and 2
are connected with classical optimization theory [1]-[7].
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Solving quadratic equation systems
via nonconvex optimization methods*

A.S. Strekalovsky, M.V. Yanulevich, and M.V. Barkova
Matrosov Institute for System Dynamics and Control Theory
of the Siberian Branch of RAS , Irkutsk, Russia

Consider the following system of quadratic equations [8]:

(x,Cix) +{d" 2) +v =0, i=1,2,...,m, (1)

l\JI»—A

filz) =
where C;, i = 1,m, are, in general, indefinite (n x n)-matrices such that
CizAi—Bi, Ai,Bi>0 ViE{l,Q,...,m}.

Further, we reduce system (1) to nonsmooth optimization problem
as follows:

Zm )| =CGla) ~H(x) Lmin, ze R, (2)

where objective function F'(-) is the (d.c.) function [1,2,6], which can
be represented as a difference of two convex functions. For instance, we
consider two d.c. representation (j = 1,2) of the form

F(z) = G,(z) — Hy(z) Vae R" (3)

*This research is supported by Russian Science Foundation, project No. 15-11-
20015.
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Here the first d.c. representation (3) is given by the functions:

Gi(z)=2>" max{%(x, Aix) + {(d* ) + 4, %(x, Biz)},
i=1

() = % L, (Ai + By)z) + (d' ) + ﬂ

Further, The second d.c. representation is as follows:

Ga(z) = ZmaX{<w Aiw) +(d', x) + i, (3, Bix) — (d', z) — v},

Ha(@) = § 3 (o (4 + Bo).

Note that in both d.c. representations (3) the functions G;(-), j = 1,2,
are nonsmooth and functions H;(-), j = 1,2, are differentiable.

Proposition 1. If z is a solution to problem (P) and F(z) = 0,
then z is a solution to system (1).

For solving optimization problem (P) we apply the Global Search
Theory [1,2] based on necessary and sufficient global optimality condi-
tions. Note that global search method includes two principal parts:
local search and procedures of improving a critical point z € R" (i.e
procedures for funding a point v € IR"™ such that F(u) < (, where
¢ := F(z)) provided by a local search method.

To this end for a fixed vector y € IR™ it is necessary to solve
the following nonsmooth convex auxiliary (partially linearized) problem
(both on every step of the special local search method and on the stage
of improving a critical point):

(PL(y)):  ®y(2) = Gj(x) = (VH;(y),z) $ min, z e R", j=1,2.

In order to perform it, we solve the nonsmooth problem (PL(y))
via the smooth convex problem, increasing the dimension from n up
to (m + n). For the first case of d.c. representation (3) the problem
(PL(y)) is reduced to the following smooth convex optimization problem
with quadratic inequality constraints:

Oy (z,t) = (e,t) — (VH1(y),z) | {mr)l (z,t) € R™™™,
<Z‘,Bi$>§ti, i:1,2,...,m,

~
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where e = (1,1,...,1)T € IR™ and the gradient of H,(-) at point y € IR"

is as follows
m

m
VH (y) =Y (A + By + > d'.
i=1 1=1
In addition, for the second d.c. representation we employ another
smooth convex optimization problem:

Gy(x,t) = <€,t> — <VH(y)’ fE> i/ {l’llfr)l, (x,t) c Rn—i—m’

(z, Aiz) + (d', 2) + 7 < ti, (5)
(x,Bix) — (d',z) —vi <t;, i=1,2,...,m,

where

m

VHy(y) = Z(Ai + Bi)y.

i=1

The computational experiments were carried out on test problems [9]
with dimension up to 100. For solving smooth auxiliary problem (4) and
(5) we apply existing methods and software (for instance, IBM ILOG
CPLEX) for smooth convex optimization [3-5]. In addition, we compare
the effectiveness of developed algorithms with rather popular solvers, for
instance [7].
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Variant of simplex-like method for linear
semi-definite programming problem*

V.G. Zhadan
Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

Let S™ denote the space of symmetric matrices of order n, and let S
be the cone in 8™, consisting of positive semi-definite matrices. We use
also the inequality M = 0 to indicate that a matrix M belongs to S.
The inner product of matrices M7 and My of the same size is defined as
the trace of the matrix MlTMg and is denote by M; e Ms.

The linear semi-definite programming problem is to find

min C e X, (1)
Aje X =0V, i=1,....m, X =0,

where the matrices C € 8™ and A4; € §", 1 < i < m, are given. The
matrix X € 8™ is a variable. We assume that the matrices A;, 1 < i < m,
are linear independent.

The problem dual to (1) has the form

max b7 u,

ST WA+ V =C, V=0, (2)

where b= [b,...,b™], V € S".

Let nao =n(n+1)/2/ be the n-th triangular number. Let also vechX
denote the direct sum of parts of columns of X € S™ beginning with the
diagonal entry. The dimension of vechX is equal to na. The operation

*This research is supported by the Program of Fundamental Research of Russian
Academy of Sciences 1.5 P, and by the Russian Foundation for Basic Research
(projects n0.15-01-08259 and no.14-07-00805).
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svecX is defined similarly. It differs from the preceding operation vech X
only in that the off-diagonal entries of X are multiplied by v/2 before
placing into svecX.

We denote by £,, and D,, the elimination and duplicated matrices
respectively [1], and by L, = Dyl D, = Danl. The matrix Ds of
order np is diagonal with the vector svecE on its diagonal, where FE is
a matrix of ones.

The optimality conditions for both problems (1) and (2) can be
written in vector form as

(svecX,svecV) = 0,
AsvecsveCX = b, (3)
svecV = svecC — AT w

svec ™)

where angle brackets indicate the Euclidean inner product in finite-
dimensional vector space, and A, denotes the m x n? matrix with
svecA; as its rows, 1 < ¢ < m. Matrices X and V must be positive
semi-definite.

It is possible to obtain various numerical methods for problems (1)
and (2), solving the system (3) by various ways. Here we consider the
variant of simplex-like method.

Denote by Fp the feasible set in problem (1). Let X € Fp, and let

X = @Diag (n',...,1",0,...,0) Q",

where @ is an orthogonal matrix of order n, n* > 0, 1 < i < r. Let
@ p be the n x r matrix formed from the first » columns of @, and let
A?B =Q%A,Qp,1<i<m. Then X is an extreme point of Fp, if and
only if

rank [A?B, - ,A,C?LB] =ra.

Thus the point X € Fp may be extreme only when the rank r of X is
such that A < m. We say that the extreme point X € Fp is regular
if rA = m. Otherwise, in the case where rA < m, we call the extreme
point X irregular.

Denote by A%E_ the m x ra matrix whose rows are vectors svecA;,
1 <i < m. Also denote by C?% the matrix Q5CQp and by V@& — the
matrix QLVQp. It is evident that the first equality in (3) is fulfilled, if
V@B =0,,.

1. Pivoting in a regular extreme point X. In this case we have the
system of linear equations

svecV 98 = svecC9® — (ALE )T u=0,,, (4)

svec
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with the non-degenerate matrix A%E_ of order m = ra. Therefore

u= ((ASQC)T) e,

If the matrix V(u) = C — Y., u'A; is positive semi-definite, then X is
a solution of problem (1). In what follows we assume that it is not such
a case.

Represent the matrix V in the form V' = HDiag(9)HT, where H is
an orthogonal matrix. Then there exists the eigenvalue §* < 0 among all
eigenvalues 6. Let hj be the corresponding eigenvector. It can be proved
that the vector hy does non belong to the columns space of the matrix
@p. The point X is updated in accordance with the following formulae

X =X+aAX, AX =QpAZQL + nyhl, (5)
where o > 0 is a stepsize, and the matrix AZ satisfies to equations
A; e [QpAZQL + hyhi] =0, 1<i<m.

The value of objective function C' e X in the updated point X is less
than in the previous point X, namely

CeX=CeX+alp<CeX. (6)

The point X is an extreme point of Fp too.
2. Pivoting in an irregular extreme point X. In this case the system
(4) is underdetermined. Therefore we take the normal solution

-1
= (A92,) [(A%2.)" (A%2,)]  svecC®,
The matrix AX in (5) is replaced by the following one

AX = [Qp hi] { IA(}? If } @B hk]T;

where the vector w is chosen by a special way in order to preserve the
formulae (6). Here we suppose in addition that m = ra + p with 0 <
p<r.

Theorem. Let the problem (1) be nondegenerate. Let also the starting
extreme point Xog € Fp be such that the set

]:P(Xo):{XE]:PI C.XSC.X()}
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is constrained. Then the sequences {X} generated by the proposed
method belongs to Fp(Xo) and converges to the solution of (1).

There are some other generalizations of simplex-method for linear
semi-definite programming problems (see, for example, [2]).
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Covering constant of the restriction of a
linear mapping to a convex cone*

S.E. Zhukovskiy and Z.T. Zhukovskaya
Peoples’ Friendship University of Russia, Moscow, Russia

This work relies on the results in [1], and is an extension of the
development in [2, 3].
Given a linear mapping A : R® — R* and vectors by,...,bs € R™,
denote
K :={zeR" : (x,b;) <0,j =1,s}.

Here (-,-) states for inner product, | - | states for the corresponding
Euclidian norm.

In this paper, we consider the problem of finding of a prior estimate
for distance from an arbitrary point zg € K to the set of solutions to
the system Az =y, x € K, where y € AK is an arbitrary point.

Hoffman’s lemma implies that there exists o > 0 such that

- A
Vrzge K, Vye AK Jz € K: y= Az and |x—x0|§u.

(1)
So, the desired estimate is linear. There appears a natural question: how
can the number « be calculated for given matrix A and vectors b;. Below
we state a proposition that reduces this problem to the same problem in
the space R"~! with the lower dimension.

The mentioned constant « is also called the covering constant of the
mapping A|x : K — AK. Recall the corresponding concept. Let X, Y
be metric spaces with metrics px and py, respectively, a > 0 be given.

«

*This research is supported by the RFBR grants (projects Ne15-01-04601, 16-01-
00677).
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Definition. The mapping ¥ : X — Y is called a-covering, if
By (¥(z0),ar) C ¥(Bx(xzo,r)) Vao € X, Vr>0. (2)

The least upper bound of all positive o for which (2) holds is called
covering modulus of ¥. We denote this number by cov(¥).

The concept of covering was used in [1] to derive sufficient conditions
for existence of coincidence points of two mappings. In [2], the stability
of coincidence points of covering and Lipschitz mappings was proved.
The covering mappings are applied for investigation of implicit ordinary
differential equations (see [3]), abstract and integral Volterra equations
(see [4]), implicit differential inclusions (see [5]), etc.

The stated definition directly implies that the mapping A|x : K —
AK is a-covering if and only if (1) holds. So, the initial problem can be
stated as a the problem of finding of the mapping A|x covering constant.
At the same time, the most interest causes not finding of o > 0 satisfying
(1), but the number cov(A|x), since the interval (0,cov(A|x)) is the set
of all the desired a.

Let us state the main result. Assume that

(i) interior of K is nonempty;

(ii) for each j = 1,s, inequality (b;,z) < 0 is not a consequence of the
system (b;, z) <0, i # j;

(iii) linear mapping A is not injective.

Denote by I'; the face of the cone K that is orthogonal to b;, i.e. I'; =
{x € K : (bj,z) = 0}. It is a straightforward task to ensure that the
dimension of T'; equals to n — 1 if (ii) holds.
Lemma. Assumptions (i)-(iii) implies cov(A|x) = min cov(A|r;).
Jj=1,s

Assumptions (i)—(iii) are not burdensome. In order to assumption
(ii) be satisfied, from the system (b;,x) < 0, i = 1,s, there can be
excluded the inequalities (b;,) < 0, which are consequences of the
systems (b;, ) < 0, i # j. The set of solutions to the obtained system
coincides with K. If the interior of K is empty then the initial problem
can be considered on the linear hull of the cone K instead of R™. In this
case assumption (iii) can be changed by the noninjectivity of A on the
linear hull of K.

This lemma cannot be applied in the case when (i) and (ii) hold
and (iii) is violated. However, in this case, it is obvious that cov(A|k)
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coincide with cov(A), which is equal to the least eigenvalue of A* A (see,
for example, [6], §6.2.2).
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Live migration of virtual resources in
multi-tenant data centers *

I.A. Zotov and V.A. Kostenko
Lomonosov Moscow State Univercity , Moscow , Russian Federation

This work extends [1,2] and relies heavily on descriptions introduced
in those works.

In a modern multi-tenant data centers scheduling is a crucial
problem, that greatly affects performance and utilization of physical
devices and overall computational capabilities. Heavily loaded data
centers suffer from resource fragmentation and underutilization. These
issues could be resolved during maintenance, but this always requires
interruption of virtual resources accessibility, which is impossible in
Infrastructure-as-a-Service (IaaS) model, where end user specifically
demands uninterrupted services.

*This research is supported by the Ministry of Education and Science of the
Russian Federation, ID RFMEFI60714X0070, agreement 14.607.21.0070.
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In [1,2] we propose a basic mathematical definition of IaaS
multitenant data center along with a tenant definition and a set of
SLA constraints to describe uninterruptable service contracts. In [3] we
define a scheduling algorithm that resolves placement problem of tenants
onto physical resources while holding SLA’s. This algorithm shows a
significant improvement in resource utilization over those implemented
in [4-6], providing either smaller load on each physical device, or full
load on the subset of servers, allowing to shut down remaining ones thus
increasing energy efficiency of data center.

The experimental research presented in [3] shows, that effective
resource utilization in a heavily fragmented data center with more than
60% utilization yields many relocations of working virtual machines and
database instances. The number of virtual resources relocated grows with
the overall load of data center. To maintain uninterrupted service from
those resources the data center control layer should provide mechanisms
for live migration. A schedule of the live migration should be constructed
by the scheduling algorithm that creates a tenant placement. If it
can’t devise the migration schedule for a given placement, the named
placement should be rejected and reconstructed from scratch.

We describe a set of parameters that will affect migration of a virtual
machine or a database instance in a live data center. The key parameters
of migrating virtual machine in this respect are RAM consumption, RAM
exchange speed and external communications speed. The parameter of
data center is current load of it’s resources, namely network resources.
We claim that the time of migration of a given virtual machine depends
only on those parameters. Sufficient network throughput between current
working machine and it’s mirrored replica on the destination server
allows to transfer all working data to the destination virtual machine
untill it is fully up to date with current virtual machine. The source
machine can then be transparently disabled and removed from data
center, thus finishing the migration process.

We then define a set of constraints that allows to calculate overall
migration time of virtual machine on given data center workload and
virtual machine parameters. This constraints allow to devise migration
costs of all the virtual resources that need to be relocated alongside with
a general feasibility of complete migration schedule.

Based on these constraints we introduce modified scheduler algorithm
[3], that is aware of migration costs and is able to construct a feasible
migration schedule. It allows to construct only resource placement that
can be performed on a live data center without interrupting any of
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working or migrating virtual resources services. The algorithm can also
be provided with a directive migration time, so that the constructed
migration schedule does not exceed this additional constraint. Data
center that utilizes the given scheduling algorithm is able to provide
uninterrupted service as well as guarantee all tenants SLA’s during the
time of migration.

This work introduces mathematical apparatus to formulate and check
time constraints for migration of virtual resources based only on their
parameters and work load of data center. Using this apparatus we
define a migration-aware scheduling algorithm that can be used as
scheduler in data center, which implements IaaS model and is to provide
uninterrupted service alongside with high utilization of it’s resources.
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Multiple objective decision
making

Convolution methods for criteria of efficiency
and risk in the problem of investment
portfolio choice

V.A. Gorelik and T.V. Zolotova
Dorodnicyn Computing Centre, FRC CSC RAS, Financial University
under the Government of the Russian Federation, Moscow, Russia

The development of optimality criteria for a securities portfolio
involv- es solving the issue on the relationship between the return and
risk of the portfolio. In [4], Markowitz stated the problem on the selection
of an optimal portfolio as the problem of minimizing the difference
between the variance and the expectation of the portfolio return. In
addition, in the same book the problem of maximizing the expected
return under a constraint on the variance is considered. The problem
of minimizing the variance under the constraint on the return is also
considered. Solutions of all these problems are efficient portfolios. In [2,
3], the problem on portfolio selection was considered as the problem
of maximizing a linear convolution of criteria “expectation—variance”
with a weight factor (risk coefficient). By the convexity of the set of
attainable values for the expectation and variance of portfolios (in the
“north-west” direction) it gives necessary and sufficient conditions for
the Pareto optimality, i.e., any problem whose solution is an effective
portfolio is equivalent to a given problem at a certain risk factor.

In [1], we considered the problem of minimizing the convolution of the
ratio type with the risk function defined in the metric /s and the problem
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of minimizing the probabilistic risk function. We also proposed a method
of reduction of such problems to problems of quadratic programming
(for the problem of minimizing the probabilistic risk function under
the assumption of a normal distribution of random returns of financial
instruments).

Here we consider one of the possible statements, namely, we define
an optimal portfolio as a solution of the problem of maximizing the
expectation of the portfolio return, provided that the probability of a
negative random value of the portfolio return does not exceed a given,
sufficiently small value:

max7r, Prz<0)<eze=1, x>0, (1)

where ¢ is a given sufficiently small positive value, e = (1,...,1), and P
is the probability, ¥ = (1, ..., 74, ..., 7 ) is the vector of expectations of
financial instruments.

We show that problem (1) is reduced to a problem of convex program-
ming and its solution coincides with the solution of the problem of
maximizing the linear convolution of the criteria of the expectation and
the standard deviation of the random portfolio return for some weight
coefficient of the standard deviation. Consider the problem

maxrx, kT > (xKx)l/Q, ze=1, x>0, (2)
for which the Lagrange function
L(z,\) = 7z + A(kfz — (2K 1)) (3)

is defined on the set X = {x|ze =1, x > 0}, A is the Lagrange multiplier,
k is a positive coefficient, K’ = (045 )nxn is the covariance matrix.

Lemma. If the convex programming problem (2) has a solution x
and the corresponding Lagrange multiplier is positive, A\° > 0, i.e.,
(2%, %) is a saddle point of the function (3), then z° is a solution of
the problem

0

0
(xKx)l/Q], ze=1,z>0. (4)

max|re — ————
ax[rr = o

Theorem 1. Let {r;} be a system of random variables each of which
has a normal distribution, 7; be the expectation, K = (0;)nxn be the
covariance matrix, and let the conditions of the lemma hold. Then the
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solution of problem (1) coincides with the solution of the problem of
maximizing the linear convolution of the criteria of the expectation and
the standard deviation of the random portfolio return:

_ 1
ineag)(c[rx — ay(zKx) ], (5)
where a1 = %ﬁod, d= (®1(1-2¢))~, ®(-) is the Laplace function, \°
is the value of the Lagrange multiplier in problem (2).
Now we find an optimal portfolio as a solution of the problem
of maximizing the linear convolution of the expectation and variance
criteria for the portfolio return with the weight coefficient o > 0:

max[rz — a(zKz)], ze=1, z>0. (6)

x

We examine the following problem: In which case solutions of
problems (1) and (6) coincide?

Theorem 2. Let 2° be a solution of problem (1), the optimal value
of the Lagrange multiplier in problem (2) is positive, A° > 0, and the
covariance matrix K = (0;)nxn is strongly positive definite. Then there
exists a value of the weight coefficient « in problem (6) such that the
solutions of problems (1) and (6) coincide.

Theorem 2 proves the existence of a value of the risk coefficient «
in problem (6) for which solutions of problems (1) and (6) coincide.
However, Theorem 2 allows one to find the risk coefficient only by solving

mrinxKx, rx>r ,xze=1, x>0, (7)
where rg is the expected return of a portfolio at the solution point of
problem (1), i.e. 72 = r). In the following assertion (Theorem 3), we
obtain a value of the risk coefficient « for full-size portfolios.

Theorem 3. Let the conditions of Theorem 2 be satisfied and let
a solution of problem (1) be a full-size portfolio. If in problem (6) the
weight coefficient « satisfies the equation

4(1_ (EK le) d2) 4d2 (EK le) (TK 1 (EPII(( 1”2 ) +

e ) e )

where e = (1, ., 1), 7 is the vector of expected returns, d =
(@~ 1(1-2¢))7 %, e > 0, and ®(-) is the Laplace function, then solutions
of problems (1) and (6) coincide.
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Thus, if we use the model with a probabilistic risk function for the
search for optimal portfolios, the results of this study make it possible
to determine the equivalent ratio of the investor to risk. Problem (6) is
computationally most convenient; for the search for an exact solution it
is reduced to a system of linear equations. The results obtained in the
present paper allow one to solve problem (6) instead of (1) for certain
values of the parameters of these problems.
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Composed methods to reduce the Pareto set”

V.D. Noghin
Saint Petersburg State University, Saint-Petersburg, Russia

The paper deals with a multicriteria choice problem, which has in
its setting a set of feasible alternatives X, a numerical vector criterion
f=(f1,f2,---, fm) and a binary preference relation > x of the Decision
Maker which is defined on the set of alternatives and usually unknown.
A set of selected alternatives is denoted by C'(X). This set is a solution of
the multicriteria choice problem and one must be determined at the end
of decision making process. Moreover, we introduce C(Y) = f(C(X)).

Let Y be a set of feasible vectors, i.e. Y = {y = f(z) | for some
x € X}. By >y we shall denote a preference relation, defined on Y, and
also

y=yy <=azx=-xa2 VzezVied, y=f(z),y = f(a),

*This research is supported by the Russian Fund for Basic Research (No 14-07-
00746).
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where 7, T’ are classes of equivalence generated by the relation x ~ 1’ <
flx) = f(a).

We shall assume that the following four reasonable axioms are
fulfilled.

Axiom 1 (exclusion of dominated alternatives). For any y,y € Y
the following implication y =y y' =y ¢ C(Y) is true.

Axiom 2 (transitivity). There exists an extension = of the relation
>y on all space R™, and also > is transitive.

Axiom 3 (compatibility). For i =1,2,...,m and for any two vectors
Y,y € R™ such that

Yk :y;ka #7’7 Yi > y;

it follows that y = y'.
Axiom 4 (invariance with respect to linear positive transformation).
For any y,y' € R™ and arbitrary o > 0, ¢ € R™ the implication

y=19y = (ay+c) = (o +¢)

18 true.

We shall say [1] that a quantum of information about the preference
relation > with two groups of criteria A, B and positive parameters
w; (Vi € A),w; (Vj € B) is given if for any y,y’ € R™ such that
yi—yl = wi (Vi € A), y}—y; = w; (j € B)ys =y, (Vs & (AUB))
the relation y > v’ holds.

Theorem 1.Let X C R™ be a convex set and a vector-function
f be concave on it. Assume that we have a quantum of information
about the preference relation with two groups of criteria A, B and the
corresponding positive parameters. Then for any set of selected vectors
C(Y) the inclusion

C(Y) C Closure( U {f(z*) eY] Zulgl(aﬁ*) = max;ex Zulgl(x)})

neEM i=1

is true, where M = {u € RP|u; > 0 Vi, >0  pi =1} and p =m —
card(B) + card(A)card(B) components of g consist of g; = f; Vi ¢
B, gij = wjfi +wifj Vi e Aand Vj € B.

Theorem 2.Let X C R™ be a convez set and a vector-function f
be bounded above and concave on it. Assume that we have a quantum of
information about the preference relation with two groups of criteria A, B
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and the corresponding positive parameters. Then for any set of selected
vectors C(Y) the inclusion

C(Y) C Closure( | {f(z") € Ylllu - g(a")|| = mingexu - g(x)[})

uelU

is true, where U = {u € RP|u; > sup,cxgi(z) fori=1,2,...,p} and g
is the same as in Theorem 1.

Remark 1. It must be noted that for polyhedral concave vector-
function f and polyhedral set Y the operation ’Closure’ may be omitted
in above theorems.

Theorem 3. Let f be an arbitrary m-dimensional numerical vector-
function defined on arbitrary set X. Assume that o € R and we have a
quantum of information about the preference relation with two groups of
criteria A, B and the corresponding positive parameters. Then for any
set of selected vectors C(Y') the inclusion

() c (J{f(e") € YImaximr ... pllui — gs(=")|| =
uelU

= minge xmax;=1,2,..plu; — gi(z)|}

is true, where U ={u € RP|>",_,,
Theorem 1. 7

Remark 2.All above results take place in general case when we have
more than one quantum of information. Namely, a vector-function g may
be obtained after taking into account not only one quantum but some
finite collection of consistent information quanta about the preference
relation. In this case the equality p = m — card(B) + card(A)card(B)
may be false. For more details about using an arbitrary collection of
information quanta see [1-3].

_____ p Ui = a} and g is the same as in
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Multicriteria optimization problem with
dynamics*

F.P. Vasiliev, A.S. Antipin, and L.A. Artemyeva
Lomonosov Moscow State University, Dorodnicyn Computing Centre ,
Moscow, Russia

The linear optimal control problem with the fixed initial state and
boundary condition in the form of a finite-dimensional multicriteria
equilibrium problem is considered. This problem can be formulated in
the following way [1]:

it is needed to find the control u € U and a vector A € E'" satisfying
the conditions:

(A, F(a(tisu))) — inf, 1)

where
i(t) = DWa(t) + Bult) +9(t), to<t<ty alte) =0, (3)

Here f(z) = (fY(x),..., f™(x)), * € E™ — is the given vector-function
with convex, differentiable coordinates fi(z), i = 1,...,m, D(t),
B(t), g(t) — matrices of corresponding sizes with piecewise continuous
elements, tg, t; — fixed time moments, g € E™ — fixed initial state,
u = u(t) € Lito,t1] — control, z = x(t;u) = (z(t),...,2"(t)),
to <t < t; — system (3) trajectory, corresponded to the contol wu(t).

To find the solution of the problem (1)—(3) the extragradient method
[2] is proposed and examined.
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Threshold strategies
in investor’s behavior model*

V.I. Arkin and A.D. Slastnikov
Central Economics and Mathematics Institute, Moscow, Russia

1. One of the fundamental problems of investing in real sector
concerns the determination of optimal time for investment into a given
project (see, e.g., classical monograph [1]).

The project is specified by the pair (m, ¢ > 0, I) where m is
the revenue from the project at time ¢, and I means the amount of
investment required to implement the project. Prices on input and
output production are assumed to be stochastic, so m; is considered
as a stochastic process, defined at a probability space with filtration
(Qv}—’ {]:tvt > 0}7P)

At any time an investor can either accept the project and proceed with
the investment or delay the decision until he obtains new information
regarding its environment (prices of the product and resources, demand
etc.). The goal of an investor in this situation is to find, using
the available information, an optimal time for investing the project
(investment timing problem), which maximizes the net present value
from the project:

(o)
E </ mee Pids — Ie_’”) 1 <00} — Mmax, (1)

where 14 is the indicator of A, and maximum is taken over all investment
times 7.

*This research is supported by Russian Foundation for Basic Researches (project
15-06-03723).
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The majority of results on this problem (optimal investment strategy)
has a threshold structure: to invest when present value from the project
exceeds the certain level (threshold). In the heuristic level this is
so for the cases of geometric Brownian motion, arithmetic Brownian
motion, mean-reverting process and some other (see [1]). And the general
question arises: For what underlying processes an optimal decision to
an investment timing problem will have a threshold structure? Some
sufficient conditions in this direction was obtained in [2].

[ee]
If we denote Xt = E </ ﬂ-Se*P(SfT)ds
t

.7-',5) — present value of the

project, implemented at the time ¢, then investment timing problem (1)
can be viewed as a special case of optimal stopping problem:

E* (Xr —1)e " 1{; <0} — max,

where E* means the expectation for the process X; starting from the
initial state x, and the maximum is considered over all stopping times 7.
Therefore, the question about a structure of optimal decision may be
addressed to a general optimal stopping problem. Under what conditions
(on both process and payoff function) an optimal stopping time will
have a threshold structure? Some results in this direction (in the form
of necessary and sufficient conditions) were obtained in [3,4] under some
additional assumptions on underlying process and/or payoffs.

2. Let X; be a diffusion process with values in the interval with
boundary points [ and r, where —oco <[ < r < 400, open or closed (i.e.
it may be (I,7), [I,r), (I,r], or [I,r]), which is a solution to stochastic
differential equation:

dXt = G(Xt)dt + O'(Xt)d’wt, X() =,

where w; is a standard Wiener process. Assume that a(-), o(-) are
continuous functions, and o(xz) > 0 for all + € (l,r). Under these
assumptions the process X; will be regular, i.e. starting from an arbitrary
point x, the process reaches any point y in finite time with positive
probability.

It is known that under the above assumptions there exist (unique
up to constant positive multipliers) increasing and decreasing positive
functions ¥ (x) and ¢(x), which are the fundamental solutions to the
ODE

() f'(2) + 50 (@)1 (@) = pf () )
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on the interval (I,r).
Let us define a threshold stopping time 7, = inf{t>0 : X; > p} —
the first time when the process X; exceeds level p.

Theorem 1. Threshold stopping time T, , p*€(l, 1), is optimal in the
investment timing problem (1) for all x€ (1, r) if and only if the following
conditions hold:

(p— DY) < (p* — Do(p) for p <p™; (3)
Y(p") = (" = DY'(p");
a(p) < p(p—1) forp>p",
where P (x) is an increasing solution to ODE (2).

3. As Theorem 1 shows, under certain assumptions the optimal
investment rule in problem (1) can be found over the class of all threshold
stopping times {7,, p € (l,r)}. For this class the investment timing
problem (1) can be written as follows:

(p—I1)E®e "™ — max . (4)
pe(l,r)
The following result gives necessary and sufficient conditions for
optimal threshold.

Theorem 2. Threshold p* € (I,r) is optimal in the problem (4) for
all z € (I,7), if and only if the conditions (3) and

(p—1I)/v(p) does not increase for p > p*,

hold, where 1(p) is an increasing solution to ODE (2).
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The unified maximum principle for optimal
economic growth problems*

S.M. Aseev
Steklov Mathematical Institute, Moscow, Russia

Let G be a nonempty open convex subset of R™ and let
f:[0,00) x G xR™ = R™ and fY:[0,00) x G x R™ — R

The following problem (P) arise in many fields of economics, in
particular in growth theory (see [1]):

J(z(-),u(")) = /OOO FOt, (t), u(t)) dt — max, (1)
@(t) = f(t,z(t),u(t),  2(0) ==, (2)
u(t) e U(t). (3)

Here z(t) € R™ and u(t) € R™ are the values of the state vector and the
control vector at time t > 0, respectively, g € G is the initial state and
U: [0,00) = R™ is a multivalued mapping with nonempty values.

Assume that for a.e. t € [0,00) the derivatives f,(t,x,u) and
fot,x,u) exist for all (z,u) € G x R™, and the functions f(,-,-),
O, -0, fu(s,-, ), and fO(,-,-) are Lebesgue-Borel (LB) measurable in
(t,u) for every x € G, and continuous in x for almost every ¢ € [0, 00)
and every u € R™. The multivalued mapping U(-) is also assumed to be
LB-measurable, i.e. the set grU(-) = {(¢,u) € [0,00) x R™: v € U(t)}
is a LB-measurable subset in [0, 00) x R™.

By definition, (z(-),u(-)) is an admissible pair in problem (P) if u(-)
is a Lebesgue measurable function satisfying (3) for all ¢ > 0, z(-) is
the corresponding to wu(-) locally absolutely continuous solution of the
Cauchy problem (2) on [0, 00) in G, and the function t — fO(¢, z(t), u(t))
is locally integrable on [0,00). Thus, for an arbitrary admissible pair
(z(+),u(-)) and any T > 0 the integral

T
Jr(a() u() = / £t (), u(t)) d

is well defined. An admissible pair (z.(),u«(-)) is optimal in problem
(P) if the corresponding improper integral in (1) converges (to a finite

*This research is supported by the Russian Science Foundation under grant 14-
50-00005.
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number) and the following inequality holds for any other admissible pair

(@), u()):

J(@a (4), ui( >hmsup/ O, x(t), u(t)) dt.
T—o00
Following [3], we will impose the following conditions on admissible
pairs (z4(-), us(:)) in problem (P).

(A1) There exists a continuous function 7: [0,00) — (0,00) and a
locally integrable function ¢: [0,00) — R such that {z: ||z — z.(t)| <
y(#)} C G for all t € [0,00) and

(1ot e+ 1208 2w )} S (1),

max
{z: lz—z. @) [<v ()}

(A2) There exists a number S > 0 and a nonnegative integrable
function X : [0,00) — R such that for all ( € G, satisfying the inequality
I€ — ol < B, the initial value problem (2) with u(-) = u.(-) and the
ingtial condition x(0) = ¢ (instead of x(0) = x0) has a solution z((;-)
on [0,00) in G and

0 a.€.
o[ (0).0(G ) — 2 0)] S ¢ = mollAw).

If (z«(-),us(:)) is an admissible pair satisfying conditions (A1) and
(A2) then the fundamental matrix solution Z,(-) of the linear system

() = Lot 2 (t), ua(t)) 2(8), 20,

with initial condition Z,(0) = I where I is the identity matrix is well
defined on [0, c0).

Let (2.(-),u«(-)) be an admissible pair that satisfies (A1) and (A2),
and such that the functional (1) converges. Then without loss of
generality one can assume that there is a neighborhood © C [0,00) x G
of the set grz.(-) = {(¢,2.(t)): t > 0}, such that for all (¢,¢) € Q there
is a solution z(¢, t;-) of the Cauchy problem

i(s) = f(s,2(s),ux(s)),  z(t) =,
on [0,00) in G, and for all (¢,¢) € Q the integral

wie.o - | P (s2(C 1), ua(s)) ds
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converges. Notice, that the meaning of W (¢, {) is the conditional value of
the capital stock ¢ at time ¢ under a given investment plan u.(-) (see [2]).

Define the normal form Hamilton-Pontryagin function H : [0, 00) x
G x R™ x R™ — R! for problem (P) in the usual way:

H(t,x,u,v) = fo(t,x,u)+<f(t,x,u),¢>, t>0,z€ G, ueR™ ¢peR".

The following result unifies the normal form version of the Pontryagin
maximum principle for problem (P) developed in [3] with the Hamilton-
Jacobi-Bellman equation without any a priory regularity assumptions on
the value function (see [2] for details).

Theorem 1. Let (x.(-),u«(-)) is an optimal admissible pair in
problem (P) that satisfies conditions (A1) and (A2). Then

(i) the partial (Fréchet) derivative Wy (t,x.(t)) exists for all t > 0,
and

Woltnn(0) = 2.0 [ 20009 s, 120

(i) the partial derivative Wi(t, z.(t)) exists for a.e. t > 0, and

Wi(t, z(t)) +

- sup {(Waltaa(0), f (b a(B),w) + P a(t),w) | 20

ueU(t)

(11i) the wvector function t — ¥(t) = Wi(t,z.(t)), t > 0, is locally

absolutely continuous and satisfies the core relations of the normal
form mazimum principle for problem (P):

D(t) = =M (b, (1), ua(t), ¥(1),

H(t, 2. (), us(1), (1) = Zlélgt)%(t,x*(t),u,w(t))-
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Fresh look at fair division problems: case
with a massive discrete component*

M.L. Blank
Russian Academy of Sci. Inst. for Information Transmission
Problems,and National Research University Higher School of
Economics, Moscow, Russia

One of very basic problems of mathematical economics is the question
of fair distribution of various types of resources between agents with
different subjective estimates of the resources. Typical examples are cake-
cutting, chore-division or an apartment rent-partitioning. In the most
general form the fair division means that in the result of the division
the share of each agent is “not worse” than others. However, depending
on the exact mathematical formalization of the word “worse”, the results
(and even the existence of the solution) might be very different. There is
a vast mathematical literature dedicated to these matters, see e.g. [1-7]
and further references in these publications.

We introduce the notions of weak and strong solutions to the problem
of fair division, generalizing the notions of “proportional” and “envy-free”
notions used in the economics literature, and apply them for the analysis
of the division of a resource having a massive discrete component, e.g.
precious stones. Due to the complexity of the latter problem no approach
to its solution exists in the literature.

Indeed, if the resource under division consists only of a number of
stones of different prices there is no way to make a fair division. The
situation changes if additionally there is a continuous component, e.g.
some amount, of money. Obviously this amount cannot be too small in
order to make a change. We give necessary and sufficient conditions for
the existence of weak and strong solutions for the fair division problem
in terms of individual subjective estimates of the stones prices made by
each of the agents and the total amount of money. The proof of this
result is based on an explicit finite constructive algorithm of finding the
solutions.

*This research is supported by RFBR and RNF grants.
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An application of above mentioned ideas for the apartment rent-
partitioning problem may be found in [8].
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The asymptotic solution of one problem of
economic dynamics with turnpike properties
of optimal trajectories”

Yu.E. Danik and M.G. Dmitriev
Institute of system analysis of Russian Academy of Sciences, National
Research University “Higher School of Economics”, Moscow, Russia

In this work the algorithm for the construction of approximated
optimal solution of problems of economic dynamics where trajectories
have turnpike character is proposed. At first the similar approach was
described in [1]. This approach is based on the singular perturbations
theory and allows to find zero uniform optimal control asymptotic appro-
ximations that lead to balanced growth trajectories for the economic

*This research is supported by the Russian Foundation for Basic Research (Project
No. 15-01-06192 and project No. 15-29-06053).
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growth model which combines the properties of dynamical models of
Leontief and Neumann. Let us consider the discrete time dynamic models
of the economic system [2] where the time step p is a small parameter.
The dynamic Leontief model of a multisector economy has the form

olt) = Ae() + Bla(t +) — 20 +d(0), 20) =70,
teT,={t:t=kp,k=0,1,..,(N—-1),0 < p<<1}

The von Neumann growth model may be presented as follows
z(t+ p) = z(t) + (Bs — A)u(t), z(0) =zo, t€Ty, (2)

If we combine models (1) and (2) and take the terminal criterion we
get, the following modified singular perturbed problem
Py : J(u) = (2(T) = agi2) " F(a(T) = 2f0) — min (3)

2(t+ p) = Aw(t) + (B + B)(B. — AJu(t) + d(t), 2(0) = 2°  (4)
Acult) < w(t), u(t) > 0, 2(t) > 0 (5)

where x(t) — n-dimensional vector of output levels, ' = FT > 0, A,xn
is the Leontief input-output matrix, B, «x, is the matrix of capital coeffi-
cients, u;(t) > 0,u(t) = (u1(¢),...,ur(t)) — production intensities vector
during period [t, t+u|, t € T, j = 1,7, Axmxr and By, — DONnega-
tive input and output matrices for the unit of production intensities,
respectively, (B — A, )u(t) — net output vector at the end of the period
[t, t + u], d(t) = Btd(0) — vector of final demand, 8 > 0 — the balanced
growth rate of consumption. System (4) can be interpreted as a dynamic
balance equation, where the total output at the beginning of the next
period must equal the sum of the consumption volume d(t), the necessary
investments in funds B(B. — A.)u(t) required for the production of a
selected amount of net output (Bx — A,)u(t) and the costs Ax(t) of the
technological processes functioning. The constraint (5) is taken from the
von Neumann model. The criterion (3) is used to select admissible pairs
(z(t),u(t)) that will ensure the best approximation to a certain specified
target (zfi5) at the final time.

The proposed algorithm for the construction of zero uniform optimal
control asymptotic approximations is based on the direct scheme of the
boundary functions method [3,4], which is used to find the asymptotic
approximation to the solution of problem (3)-(5) as the sum of the

three series z(t,pu) = Z(t,p) + Hz(ro,p) + Qz(11,p), 2 = < z )
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The series z(t, 1) is the regular series with coefficients depending on ¢
and Mz(rg, ), Qz(r1,p) - boundary layer series with the coefficients
depending on 7y = o T = t;T. It is assumed that terms of the
boundary layer series have exponential estimates.

The steps of the algorithm are:

1) Substitute the power series expansion in the left and right hand
sides of (3)-(5) and then equate the terms with the zero power of
separately for the terms with ¢, 79, 7 to get three decomposition prob-
lems Py, IIgP , QoP for the identification of the zero terms of the control
and state approximations.

2) From problem Py find the turnpike part of the trajectory Zo(t) =
(E — A)~'d(t) and the control function g (t) = c(t)ua, where u4 is the
eigenvector of matrix (B. — A.) corresponding to the zero eigenvalue,
and c(t) is an unknown scalar function. The following conditions must
be satisfied A.tig(t) < Zo(t), wo(t) >0, To(t) > 0.

3) Near the initial point we get the problem IIyP as a system of
inequalities for Hou(7g) and Igxz(79): Ax(c(t)ua + Hou(r)) < (E —
A)7Y(t) + Hox(ro), c()ua > 0, (B — A)7Yd(t) + Hox(rg) > 0,
c(t)ua + Mou(rp) > 0, Hox(rg) = A™Ipz(0 )—|— > LA 1B 4
B)(B. — A)gu(s), Iyz(0) =2 — (E — A)~1d(0).

4) Near the final point we have the next optimal control problem
Jw) = (Zo(T) + Qox(0) — xpix) F(zo(T) + Qoz(0) — zfix) —

Qou(ﬁrr%i’gom(o) Ay (e(t)ua+Qou(r)) < (E—A)~Hd(t)+ Qox(71), c(t)ua +

Qou(r1) > 0, (E — A)~d(t) + Qoz(m1) 2 0,
Qo (1) = A™ (w710 — Zo(1)) — 2.2, A "H(E+ B)(B. — A.)Qou(s).
It should be noted that due to the nature of the criterion (3), problems
Py and IIy P do not have a criterion, moreover, not for all elements of the
solution of problems Py, IIp P and QP a single value can be obtained.
5) Finally, as all of the described decomposition problems depend on
one unknown discrete function c(t), the following problem is solved
J(uv o, C(t)) = (Z‘(T, U()(t, Hs C(t))) - xfir)TF(x(Tv U'O(tv s C(t))) - xf”)
—  min
wo (t,1,c(t))

tio(t, c(t)) + Mou(e(t), ) + Qoule(t), *

Zo(t) + Mox(Iou, ) + Qoz(Qou, 5
oz (ou, 1) + Qoz(Qou, ZT).
For numerlcal calculations a small discrepancy functional (regularizator)
can be additionally introduced in the criterion (3) to find the admissible
controls.

LT) >0, c(t) >0, Vt,
“T) > 0, Awug(t, u,c(t)) < To(t) +
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6) If there exist ¢(t) and Ipu(c(t),70), Qoul(c(t),71) such that the
problems constraints are satisfied, we get optimal trajectory approxi-
mation z(t, ug(t, i, c(t))) from (4).

Thus, for the problem approximate solution the initial control
problem (3)-(5) is reduced to the construction of the zero uniform
optimal control asymptotic approximation. For sufficiently small x the
proposed algorithm gives a good approximation of the solution and
requires less calculations in comparison with the direct solution of
problem (3)-(5) as a discrete optimal control problem.
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Deterministic queuing system”

V.V. Karelin, V.M. Bure, and A.N. Elfimov
Saint Petersburg State University, Saint Petersburg, RUSSIA

Consider a deterministic queuing system which contains a single
serving unit with three streams of applications. Speeds of receipt of
applications as well as speeds of handling of applications by a service
device depend on the quantity of the queue. At any moment the server
can handle only one application. Service systems of such type have
proliferated in recent years. For example, in various service centers an
user of a terminal device chooses the queue number in accordance with
the type of his application, then obtains a number in the chosen queue
for service. The service comes with using a multifunctional operating
device, which switches from one queue to another during an operation

*This research is supported by the Saint Petersburg State University grant
9.38.205.2014.



94 OR in economics

and wherein moments of switching are chosen by the service device. The
formulated problem is similar to the well-known problem of the control of
traffic lights at an isolated intersection [1] — [4], but significantly differs
from it by the nature of the restrictions, in particular, it is generally
assumed that the time of service in the problem of the intersection is
equal to zero. Under the problem of managing such a system it is possible
to understand the choice of the switching procedure of a servicing device
with one queue to another, guaranteeing that there is no unlimited
growth of the queue on each streams of applications. A similar problem
with two streams was considered earlier in [4].

Introduce the following notation: Let q1(t), ¢2(t), ¢3(t) be queue
lengths waiting for service of a multifunctional device for the first, second
and third streams at the time ¢ respectively. Let a;(t) u d;(t) be speeds
of receipt and fulfillment orders for the i-th line, respectively, where
i =1,2,3. Let g; be the duration of continuous service of requests from
the queue with the number 4, g; > 0 (i = 1,2, 3)

Let’s assume that:

1) a;(t) = a; > 0 is a known constant;

2) ¢;(t) is a non-negative integer (the number of requests in the queue
for service flow ¢ at time t).

3)

0, if the device supports an application from
d;(t) = the queue j # 1 ;
d;, if the device supports an application from the queue 7 ;

4) d; > a;, note that in the framework of our problem these quantities
take constant values.

5) In the initial moment of time the queue is absent, i.e. ¢;(0) = 0,4 =
1,2,3.

6) Let the duration of continuous service requests from the same
queue put the same for each of the queues.

Definition 1. The triple (g1, g2, 93) is called a cycle, where g; is
lengths of continuous service requests from the queue with the number i
(i=1,2,3)

Let us consider three sequences of time points. The first sequence:

1 1 1
=g, ) =gi+gtgta, ..., 715431 = (91+92+93)k+g1,
This sequence of time points represents the points of start of service
requests from the queue with the number two or the time of termination
of the implementation of the requirements of the first stream.
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The second sequence:

) ()

D gt T =g+t gs oo, .,

T,Ei)l = (91 + 92 +93)k + g1 + g2,
The second sequence of time points represents the points of start of
service requests from the queue with the number three, or the time of
termination of the implementation of the requirements of the second
stream.
The third sequence:

-3 )

—gi gt T =gt gttt g tortgs ...

T = (o1 + 92+ g8) (k + 1),

The third sequence of time points represents points of start of service
requests from the queue with the number one, or the time of termination
of the implementation of the requirements of the third stream. Let’s
introduce a notation for the initial time: Téo) = 0 is the start time of the
MFD (a receiption of first request for service).

Definition 2. Such regime of service applications in which there will
be accumulation of the queue i.e., the following conditions

@ (T,ﬁfl) =0, ¢ (r,i'i)l) —0, g3 (r,ﬁ?;)l) —0 Vk=012 ...

hold is called a stationary regime.

Now we find out conditions when the cycle (g1, g2, g3) will lead to the
stationary regime:

Theorem 1. A cycle (g1, g2, g3) generates a stationary regime if and
only if when the following inequalities

di — a1 > 92+93; da — a2 > 91+93; d3 — a3 > g1+ g2
a1 g1 az g2 as gs

hold.

This theorem is proved similarly to the first Theorem from [4]. As
opposed to Theorem from [4] in this theorem the question of the existence
of a stationary regime for a service system with characteristics of d;, a;
(1 = 1,2,3,...) is not obvious. The following theorem gives an answer
of this question.
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Theorem 2. Let ¢1(0) = ¢2(0) = ¢3(0) = 0. The cycle (g1, g2, g3)
generating a stationary regime exists if and only if when the following
conditions

dy —ax as d3 — a3 az
ay d—ay a3 d—ay’
ds — a3 - ai % dids
as di —a1’ a3 — dids — dias — daag
hold.
References

1. Aboudolas K., Papageorgiou M., Kosmatopoulos E., Store-and-
forward based methods for the signal control problem in large-scale
congested urban road networks // Transportation Research Part
C: Emerging Technologies 2008. V. 17, Ne 2. P. 163-174

2. Diakaki C., Papageorgiou M., Aboudolas K. A multivariable
regulator approach to traffic-responsive networkwide signal
control. // Control Engineering Practice. 2002. Ne 10. P. 183-195.

3. Gazis D., Potts R. The oversaturated intersection // Proceedings
of the International Symposium on the Theory of Traffic Flow.
London: Elsevier. 1963. P. 221-227.

4. Haddad J., Mahalel D., Ioslovich I., Gutman P.-O. Constrained
optimal steady-state control for isolated traffic intersections //
Control Theory Tech. 2014. V. 12, Ne 1. P. 84-94.

Superhedging of American options in an
incomplete {1, S}-markets (discrete time,
final horizon)

V. Khametov and E. Shelemekh
HSE University, CEMI RAS, Moscow, Russia

There are many works devoted to the problem of American option’s
pricing in incomplete markets. For example, articles by Yu. M. Kabanov,
V.1. Arkin, D.O. Kramkov, I. M. Sonin, A.N. Shiryaev, H. Follmer,
A. Schied, W. Schachermayer, F. Delbaen, R. Merton and other authors.
There in the articles they have found conditions, when a solution exists
for the problem in dynamic and static formulations. In the case of
dynamic formulation this conditions are based on existence of uniform
Doob decomposition (works by A.N. Shiryaev, H. F6llmer, A. Schied).
In static case conditions of solution’s existence for direct and "dual"
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variational problems were used (W. Schachermayer, F. Delbaen). But
no methods to construct portfolio were proposed. This presentation
differs from other works because we use minimax approach to solve the
problem of American option pricing in an incomplete market in dynamic
formulation. This approach enabled us to give a constructive description
of superhedging portfolio and optimal exercise moment.

1. FORMULATION OF THE PROBLEM. Suppose, there is a stochastic
basis (2, F, (Fn)n>0,P) and d-dimensional (d < oo) adapted random
sequence {Sy }n>0 on it. A market consisting of one risk-free asset with
constant prise 1 and of d risky assets with prises evolving as {S,}n>0
is called {1, S}-market [1]. Let us denote: 1) Si = (Sp, ..., Sy), n > 0;
2) N € N7 is a horizon; 3) Ry = {Q : Q ~ P}; 4) My = {Q :
EQ[S,41|Fn] = Sn,n > 0}, where EQ[-|F,,] is the conditional expectation
with respect to measure Q and o-algebra F,. It is well known [1], that
measure Q € Ry specifies market and {1, S}-market is incomplete if and
only if Ry NMy # &. We suppose that Ry NIy # @ and there is no
"friction" in {1, S}-market.

Let 7,N be a set of stopping moments 7 taking values in the set
{n,...,N} and {fn}o<n<n is an adapted sequence of bounded random
variables. American option is a contract between the Seller and the
Buyer: 1) the Seller sales the right (the option) to buy from him or
to sell him risky assets at any moment 7 (chosen by the Buyer) at
fixed conditions { f,, }o<n<n (dynamic payoff of American option); 2) the
Buyer exercises option, i.e. the Seller buys or sells risky assets according
the contract. To conclude the contract the Buyer pays the Seller fair
value of the option. The Seller forms a portfolio of one risk-free and d
risky assets 7 = {3,7} [1]- The set consisting of all v & (v, ..., vn) will
be denoted by DY. The restriction of the set DY to the set {n,..., N}
we denote by DX .

We treat the problem of American option pricing in an incomplete
{1, S}-market [1] as a stochastic game between the Seller and the Buyer.
The Seller has portfolios 7 as his strategies. Exercise moments 7 € T,V
are Buyer’s strategies. Suppose, that Seller’s risk function is exponential
and depends on deficit of his or her portfolio’s capital. So exponential
expected risk of the Seller at a moment n € {0, ..., N} with respect to
any Q € Ry is represented by the following formula

TAN
I(Q7T)7’y71:r+1(na S(?) £ EQ [eXp {f(n\/‘r)/\N - Z (71; AS%)} |fn] )

1=n+1
I(Q’T)(N, S’év) £ exp{fn}.
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Let DY & {%1;/ eDN: esssup IQM7 (n — 1,Sg™h) < o0 P—a.s.}.
TETN ,QERN
Obviously, D, #3,1<n<N.

Suppose, that neither the Seller, nor the Buyer knows risk assets
prices’ distribution Q € PRy. The Seller have to fulfill his obligation
according to an option for sure. Also we suppose, that the Seller is
rational, i.e.: 1) he or she assumes, that distribution of risk assets’ prices
and exercise moment (chosen by the Buyer) will maximaze his or her
expected risk; 2) he or she managers portfolio to minimazes own expected
risk. Thus, the Seller have to solve the following minimax problem:

1@ (0,50) — essinf ess sup ess sup.
yNeDN TeTd QeRN
2. IMPORTANT RESULTS.

N
Let v £ essinf esssup esssup I(Q’T)’Vnﬂ(n, Sg) be the upper
Pyn+16Dn+1 TETnN QERN

guaranteed value of Seller’s expected risk at a moment n € {0, ..., N}.
Theorem 1. Suppose {S,}n>0 is a d-dimensional adapted random
sequence, {fn}0§n<N is an adapted random sequence of bounded random

variables and Ry = {Q : Q ~ P}. Then the sequence {v} }O<n<N
satisfies the following recurrent relation P-a.s.
vl =max< ef"; essinf esssup EQ [ (7"+1’AS"+1)|]: }
Yn+1€Dnt1 QERN

N =y = e/,

Theorem 2. Suppose conditions of Theorem 1 are satisfied and Ry N
My # &. Than for anyn € {1,..., N} there is v € D,, such, that P-a.s.

ess inf ess sup EQ [U,]lve_(%“ ASn) |Fn,1} =
mEDn QERN . (1)
= ess sup EQ [U,]lve_(%w ASn) | Fr—1] -

QERN

Remark. Suppose for any n € {1,..., N} there is v} € D,, such,
that (1) is true P-a.s. As set 7" is finite, there always exists 7* € T:
ess sup ess sup 1717 (0, 5)) = ess sup I(Q 77170, So).
TeT QERN QeRN

Theorem 3. Suppose conditions of Theorem 1 are satisfied and there
are (viN,7) € DN x TN such, that P-a.s.

ess inf ess sup ess sup (@7 n (0,Sp) = ess sup (@7 ’VI*N(O, So)- (2)
NeDY reTdN Qeny QeRnN
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Then there exists a non-decreasing sequence {C}}o<n<n Such, that
AN
froav =Ino) + 3 (4, AS;) = Cri s Cf =0 P-as.
i=1

Obviously, for any n € {1,..., N} there is B}: AB: & —(S,_1, A7),
Bs =Inv) . A pair {7*,C*} is called superhedging portfolio [1]. In [2] it
is proved that capital of the superhedging portfolio {n*, C*} is minimal
among capitals of all other superhedging portfolios. This justifies our
choice of exponential utility.

2.4. Corollary 4. Suppose a stopping moment 7 € T satisfies (2).
Then it is possible to represent 7* € TN by the formula:

T* :min{O <n<N: Urjy :eXp{fn}}'
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Analysis of 2015 Chinese stock market crash
by means of generalized nonparametric
method*

N.I. Klemashev! and A.A. Shananin!>2 34
' Lomonosov Moscow State University
2 Moscow Institute of Physics and Technology
3 Federal Research Center "Computer Science and Control” of RAS
4 People’s Friendship University of Russia, Moscow, Russia

The generalized nonparametric method [1-3] is based on the results
of revealed preference theory which is devoted to solving the inverse
problem of the demand analysis. The direct problem of the demand
analysis is: given a utility function F, a price vector P and a level of
expenditure I to find the optimal demand vector by solving the following
problem: I)?%:F(X), (P, X) < I.

*This research is supported by RFBR grant Ne 14-07-00075 and by RSF grant
Ne 16-11-10246.
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The inverse problem (for a finite number of observations) is: given
a set {(P*, X")}X, of observed prices P! and consumption vectors
Xt (we call this set a trade statistics) to find a utility function F
which rationalizes the observed data, that is, each X* solves max F/(X),

(Pt X) < (P, X?Y).

When solving the inverse problem one put several requirements on the
utility function F. In the nonparametric method for market analysis and
its generalized counterpart we put an additional requirement of positive-
homogeneity of utility function (see [2], [3] for more details).

The inverse problem not always has a solution. When it does not, we
introduce the irrationality index, which shows the degree violation of the
existence conditions and come to the generalized nonparametric method
for market analysis. The method allows one to compute economic indices
and predict demand for an arbitrary price vectors.

The irrationality index [4] may be defined as the optimal value w*
of the goal function in the following linear program: minw, w + A\ —
Ar 2 Cer, (7 =1,...,T), w > 0, where ¢;; = log (%) . If the
irrationality index is zero, then the inverse problem has a solution.

The generalized nonparametric method allows one to make
predictions about consumption at an arbitrary price vector. Suppose
we have a trade statistics {(P?, X*)}]_, with irrationality index w and
a price vector P. Then the set of predicted volumes K (P) is defined as
the set of all nonnegative X such that the joint trade statistics

{(PtaXt)}zzl U {(PaX)}

has the irrationality index w.
One may show (see [5]) that if ¥ > 1, then

K(P)={X>20[(P)(P",X) 2 (P, X),7=1T},
where

w? (P, X1)
A(P)= mi o
P) te{rﬂ%}{ p <P2Xf>}

and

* —k—1
= maX{w Ctt1 Ct1t2 . Ctk—ltk Ctk.‘l' |

tT
(tr,..tiy C {1, T}, k> 0},
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The values C}, may be effectively computed in O(T®) operations by
means of Floyd-Warshall algorithm.

We present a new methodology for analyzing stock markets based on
generalized nonparametric method. We use a linear program from [6]

T T
Z Zth — min (1)
t=171=1
TH#L
Wir + )\t - )\-r 2 Ctr — Wmin, (t’ T=

Wtr 2 0. (t, T =

—_
~
~—
—~
[\)
~

—_
~
~—
—
w
~

Here wiin = 0 is the allowed level of irrationality.
The dual problem is

(CtT - o~”ﬁu‘n)xt‘r — max (4)

M)~
[M]=

t

il
-

49
W
o+ =

ngtr

N

1, (t,7=1T) (5)

T
Z Ttr = Z Trt. (t = 17 T) (6)

If {zf, | t,7 = 1,...,T}, solve (4)—(6), then z; € {0,1}. This
property allows one to visualize the solution of the dual problem as
a directed graph.

The solution of each of the problems (1)-(3) and (4)-(6) allows one
to select the most irrational pairs of periods. This reduces markedly the
number of periods an analyst needs to study carefully when analyzing
some event on the financial markets. Then we use nonparametric predi-
ctions to analyze particular stocks that might cause the crash.

In this talk we present our results of applying this new methodology
for analyzing the crash of Chinese stock market in 2015.

References

1. Afriat S.N. On a system of inequalities in demand analysis:
an extension of the classical method. // International economic
review. 1973. V. 14, Ne 2. P. 460-472.

2. Shananin A.A. Integrability problem and the generalized
nonparametric method for the consumer demand analysis
(Russian). // Proceedings of MIPT. 2009. V. 1, Ne 4. P. 84-98.



102 OR in economics

3. Klemashev N.I., Shananin A.A. Inverse problems of demand
analysis and their applications to computation of positively-
homogeneous Koniis-Divisia indices and forecasting. // Journal of
Inverse and Ill-posed Problems. 2015. Advance online publication.
DOI: 10.1515/jiip-2015-0015.

4. Grebennikov V.A., Shananin A.A. Generalized nonparametrical
method: Law of demand in problems of forecasting. //
Mathematical Models and Computer Simulations. 2009. V.1, Ne 5.
P. 591-604.

5. Shananin A.A., Tarasov S. Computing the class of the form of the
inverse demand function on discrete data. 58 MIPT conference.
2015.

System dynamic credit risk model of the
corporate borrower

D.S. Kurennoy
Lomonosov Moscow State University, Moscow, Russia

Nowadays system dynamics is often used for solving various economic
and social problems. System dynamics offers an approach in which the
model resembles reality structurally, so we can validate it’s usefulness
and consistency. Furthermore, it offers a way to see the ramifications of
that simplification through simulation, so we can test our hypotheses.
System dynamics [1, 2] is a perspective and set of conceptual tools that
enable us to comprehend the structure and dynamics of complex systems.
System dynamics is also a rigorous modeling method that enables us to
perform formal computer simulations of complex systems and use them
for different purposes. This approach to understanding the nonlinear
behavior of complex systems over time uses specialized concepts, which
are the elements of any system dynamics model: stocks, flows, internal
feedback loops, and time delays. Each of these elements is interpreted in
different ways. Mathematically, the basic structure of a formal system
dynamics computer simulation model is a system of coupled, nonlinear,
first-order differential (or integral) equations.

This work focuses on the development of a system dynamic credit
risk model of the company "Bashneft”, which is a major representative
of petroleum refining and petroleum producing industries.

The author intends to explore the possibility of using system
dynamics to build models describing production process and financial
conditions for a company. Special attention is paid to how the behavior
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of different macroeconomic factors influences the oil corporation. It’s
worth noting that the crude oil prices and oil product prices (on global
and Russian markets) are among the most significant factors. In this
case, the author considers such petroleum products as fuel oil, diesel fuel,
and gasoline. Apart from those factors, US dollar rate and tax system
(mineral extraction tax, export duties, petroleum products domestic
excise tax) have a direct effect on the stability of the model. In addition,
MosPrime rate is an important macroeconomic factor and a component
of various structures of the system dynamics model. Moscow Prime
Offered Rate is a reference rate fixed by the National Foreign Exchange
Association (NFEA) based on the offer rates of Russian ruble deposits
as quoted by contributor banks - the leading participants of the Russian
money market to the first class financial institutions.

Fig. 1. Stock and flow representation of a manufacturing process.

At the beginning of this work, a detailed analysis of the oil company
quarterly financial statements for the last 5 years was conducted. It
allowed to identify the component parts of the model and to formalize
some relationships between them. Then system dynamics tools were
employed to observe how these relationships influence the behavior of
the system over time. The result was a model that captures not only
the current state of the company, but also the further development of its
policy. This behavior is adjusted by changing external macroeconomic
factors (implemented direct links) and controlled by the interaction of
internal factors, realized by direct links and feedback loops. Internal
factors may include oil production volume, oil refining volume, different
types of costs, loan policy, and the volume of investments. Investments
are aimed at reducing the cost of petroleum refining and petroleum
production. The obtained model can be divided into two global parts that
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interact with each other. The first part describes the production process.
It determines the volume of oil production, purchase and processing and
the influence on the company profit. The second part is related to the
financial unit of the company. This determines the level of debt, costs
and loan for the considered corporation. As a result, the model allows to
understand the strategy, level of loss and the probability of default for
the company in the presence of various macroeconomic factors.
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Gender influences on the participants
behavior in the economic experiments®

1.S. Menshikovb2, O.R. Menshikova', A.O. Sedush?,
T.S. Babkina"3, and E.M. Lukinova®
'MIPT, 2CCRAS, 3Skoltech, Moscow, Russia

MIPT Laboratory of experimental economics has been carrying the
experiments beginning Fall 2013 [1, 2]. The goal of that is to study
cooperation in social dilemmas. Each experiment consistes of a different
set of 12 people, pre-selected before the experiment to be unfamiliar
with one another. All participants are pre-tested using psychological
questionaries.

The first step in every experiment begins from anonymous game
phase, where participants played 2x2 economic games. Participants are
randomly paired with an anonymous partner each period of the game.
Number of periods is not known to participants. Each period participants
are given information only about their profit for that period. After
that, we carry the initial step of group socialization: in a sequence the
participants tell their names and adjectives that start from the same
letter, in a reverse order share their life facts, and divide into the groups.
Finally, the participants play the same games like in the first step in the
newly formed groups during the socialization.

There is two series of the experiments:

1.

*This research is supported by the grant RFFI 16-01-00633A.
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In the first step two games Prisoners’ Dilemma and Ultimatum Game
are conducted. After the socialization phase two people from participants
voluntarily become leaders. The other participants decide one by one
which leader they want to join. Thus two groups of 6 are formed. Both
groups are asked to performe some group task. Series 1 consisted of 27
experiments (N=324, 202 males)[3].

2.

Unlike in series 1, in series 2 we use Prisoners’ Dilemma and Trust
Game. Participants divide into the groups this way: two people from
participants voluntarily become leaders; players that are not leaders
are asked to decide which a leader they want to join. On a piece of
paper they indicate their choice of leader and how much money they
are willing to pay for joining the group. After that we form 3 groups of
4 people. Two groups that include leaders have to perform some group
tasks. Participants from the last group without a leader are not able
to speak to or even to look at each. Therefore, the last group is not
socialized. Series 2 consistes of 5 experiments (N=60, 45 males).

Results:

1. Socialization influences decisions in Prisoners’ Dilemma and
Ultimatum Game in different ways for males and females .

In Prisoners’ Dilemma the initial (before socialization) level
cooperation among women is higher than among men in series 1 (on
average 0 = .02, Np,, = 202, Ny = 122, wilcoxon-test, p-value = .05) [4],
in series 2 (on average § = .12, N,, = 45, Ny = 15, wilcoxon-test, p-
value = .05). Whereas after the socialization the percentage of choosing
cooperative strategies among males in series 1 increases (on average 6 =
.35, N, = 202, wilcoxon-test, p-value < 0,001), in series 2 (on average
0 = .53, N,, = 45, wilcoxon-test, p-value < 0,001). Among females the
percentage of choosing cooperative strategies in series 1 increases (on
average § = .18, Ny = 122, wilcoxon-test, p-value < .001), in series 2
(on average § = .42, Ny = 15, wilcoxon-test, p-value < .001).

In Ultimatum Game the initial levels of cooperation for males
and females are equal. However, after the socialization the level of
cooperation for males is higher than for females (on average § = .2,
Ny, =202, N f; = 122, wilcoxon-test, p-value=0,04).

2. In Trust Game males trust less than females, but reciprocate more.

In Trust Game we analyzed the "average trust"and "the average
gratitude". Before socialization males trust less than females (on average
0 = .58 N,, = 45, N; = 15, wilcoxon-test, p-value = .07) and they
reciprocate more (on average 6 = 1.18, N,, = 45, Ny = 15, wilcoxon-
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test, p-value = .14). After socialization males are less trust than females
(on average § = .76, N,, = 45, Ny = 15, wilcoxon-test, p-value = .03)
and they are more gratitude (on average 6 = .76, N, = 45, Ny = 15,
wilcoxon-test, p-value = .02).

Thence we can conclude that in Trust Game socialization has not
so much effect compared to Prisoners’ Dilemma and Ultimatum Game.
Here differences between sexes lead to more trust among females and
more gratitude among males.

Our study is a confirmation of the fact that it is important to take
into account differences between sexes in socio-economic models.
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On long-term average optimality in linear
economic systems with unbounded
time-preference rates®

E.S. Palamarchuk
Central Economics and Mathematics Institute, RAS
Steklov Mathematical Institute, RAS, Moscow, Russia

The work in devoted to the study of an average optimality problem
over an infinite time horizon for linear stochastic economic systems. The
agents have unbounded time-preference rates included into quadratic
cost function. In both cases of positive and negative discounting we
propose new optimality criteria and establish average optimal controls
in the form of linear feedback laws.

*The work is supported by the Russian Science Foundation under grant 14-50-
00005.
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We consider a linear economic system with evolution described by a
controlled stochastic process X; defined on a complete probability space:

dX; = AX,dt + BUdt + Gydw; X ==, (1)

where A, B are constant matrices; Gy is time-varying; w; is a
multidimensional Brownian motion; x is non-random; Uy, t > 0, is an
admissible control, i.e. an F; = o{ws, s < t}—adapted process such that
there exists a solution to (1). Let us denote by U the set of admissible
controls.

The cost functional is quadratic over the planning horizon [0, T:

T
S = / JI(XIQX, + ULUY] dt, 2)

where @@ > 0; f; is a discount function, assumed to be monotone,
differentiable, with fo=1; ¢ = — ft/ ft defines the corresponding
discount rate.

We allow the agent to have either positive or negative time-
preference, i.e., ¢ >0 or ¢; <0. The impatience (or patience) in
influence on her/his decisions is considered to be ’extreme’ in the sense
that |¢¢] — oo, t — o0.

Ezamples. Weibull discount function f; = e~"** (¢ > 1, 7 > 0) related
to highly nonlinear subjective time perception [1]. Negative double
exponential discounting, when f; = exp (exprt) (r > 0).

Assumption 7D1. For ¢, >0 the discount function f; is
logarithmically convex.

Assumption D2. For ¢; < 0 the discount rate (—ét)/qét < ¢y,
t — oo, for some constant ¢ > 0.

First assume there exists the absolute continuous symmetric
IT; > 0, t > 0, which satisfies the Riccati equation

I, + I, A, + AJIL, — IL,BR™'B'I, + Q =0, (3)

where A; := A —1/2¢, - I (I is an identity matrix).
Then we may define a feedback control law U* by

Uy = ~B'ILX; (4)
where the process X', t > 0, satisfies
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For bounded ¢, the criterion based on long-run expected loss per unit
of cumulative discount has been proposed in [2] to study the average
optimality of U* when T — oco. However, it would not seem to be
adequate in the case considered here.

The above assumption on (3) is non-trivial. The well known sufficient
conditions, e.g., control system stabilizability and detectability, all
related to bounded matrices, clearly do not hold since || A¢|| — oo, — cc.
Moreover, A; has specific stability properties which we describe below.

Remark. Ay is superexponentially stable if ¢; > 0; superexponentially
antistable if ¢; < 0. The rate of stability (antistability) is ¢ (—¢¢).

Definition 1. Let A; be a square matrix. Then we say that A,
is superexponentially stable with the rate d; > 0 if §; — oo, t — o0,

t
| As]| < w6y and ||D(¢, s)|| < Kk1exp (— [, dv), s < t, where ®(t, s) is the

fundamental matrix corresponding toSAt, K, k1 > 0 are some constants;
A; is superexponentially antistable if — A} is superexponentially stable.

Definition 2. The pair (4;, B;) is said to be d;-superexponentially
stabilizable if there exists a matrix Ky, |[[K:|| <& such that
Ay + ByK; is superexponentially stable with the rate J,. Similarly, the
pair (A, Cy) is d;-superexponentially detectable if for Fy, ||Fi|| < é2d:,
the matrix A; + F;C; is d;-superexponentially stable (é1,¢2 are some
constants).

Obviously, if A; is d;-superexponentially stable then (A, By)
((A¢, Cy)) is stabilizable (detectable) for any bounded B; (Cy). Being
valid for the case ¢ > 0, it guarantees that the following statement holds
true.

Theorem 1. Let Assumption D1 hold. Then the control U* given
by (4)—(5) is a solution to

(d)
EJ. (U
lim sup T () — inf .
T—o00
T e/ Gel2 dt
0

Note we do not assume any bounds on G}, hence the average
optimality result remains valid even for fast-growing perturbation
parameters. Because of D1, g = fi/¢: is decreasing and may also be
perceived as a discount function. Thus the denominator in the long-
run average optimality criterion of Theorem 1 represents variance of
cumulative extra-discounted disturbances. Due to antistability of A; in
the case of ¢; < 0, we need some requirements.
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Assumption 1. The pair (A¢, B:) is (—¢;)-superexponentially
stabilizable; the pair (A, Cy) is (—¢;)-superexponentially detectable.
Assumption 2. Let G; and f; be such that

i oo fellGell?
m —

—oo t ¢ =0.
[ s fsllGs|? ds
0

Next we state the following result.
Theorem 2. Let Assumptions D2, 1 and 2 hold. Then the control
U* given by (4)—(5) is a solution to

EJ(U)

{(—¢t)ft||Gt||2dt

lim sup — inf .

T—o0

Again, we observe (negative) extra-discounting by g; = (—¢¢) f: > f: into
the average optimality criterion. Unlike the positive time-preference
case, the condition relating discount rate and discounted disturbances
is needed to establish the average optimality when ¢; < 0. At least, we
should consider only fading perturbations, i.e. ||G¢|| — 0, t — co.
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Quantile hedging of European option in
multidimensional incomplete market without
transaction costs (discrete time)

0.V. Zverev
CEMI RAS, Moscow, Russia

Theory of European option’s hedging with quantile criterion in in-
complete markets without transaction costs in discrete time was consi-
dered in some articles [1-4, 6-7]. In [1] a procedure of European
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option’s calculation with quantile criterion in one-dimensional complete
market without transaction costs was offered. The procedure is based
on theorem about S-representation of martingales [5]. In [4] for strictly
positive contingent claim in complete one-dimensional market without
transaction costs they constructed solution for the problem of quantile
hedging. In [6-7] dual problems are under research: (1) direct problem
is to maximaze probability of successful hedging with restriction that
option’s value does not exceed some given constant xo > 0; (2) dual
problem is to minimaze option’s value with restriction that probability
of successful hedging is not less than 1 — e, where ¢ € (0,1) is
arbitrary. Unlike above stated proceedings we prove that solution of
the quantile hedging problem in multidimensional incomplete market
without transaction costs can be reduced to two superhedging problems.

1. Superhedging portfolio of European option. Let
{St, Fi}ien, be a d-dimensional (d < oo) adapted random sequence
on the stochastic basis (€, F,{Fi},cy, P), where No = {0,..., N},
N < oo is a horizon. The sequence describes evolution of price for d
risky assets. By St(J ) we denote component j of d-dimensional vector S,
t € Ng. We suppose that there is one risk-free asset with zero return and
initial cost 1. Let fn (Se) be a Fy-measurable bounded random variable,
Se £ (S0, ..., Sn). By Ry we denote the set of probability measures Q
such that any measure Q € Ry is equivalent to measure P. 9y is the
set of martingale measures. Let 7{¥ £ {7t he N, be a d-dimensional F-
predictable sequence and {f:},.y, be a F-predictable one-dimensional
sequence. The sequence of pairs ™ = (5, Yt)¢en, 18 called portfolio [5].
1, ifwe An
0, ifw ¢ AN
Fn-measurable set. Let us consider two calculation problems for Euro-
pean option with contingent claims fxn (Se) and 14, (w) in incomplete
market without transaction costs [5].

Theorem 1. Suppose Ry NOMy| > 1. Than with respect to any
measure Q € Ry there exists solution of the calculation problem for
European option with contingent claim fn (Se) (1ay (w)).

Remark. The solution of the calculation problem for European
option with contingent claim fy (Se) (14, (w)) can be fully described

We denote 14, (w) = { , where Ay is an arbitrary

as follows: 7* = {8}, % }ien, (71'/\ = {8}, %)\}teNl) — self-financing
portfolio, X7 (Xg“) — capital of portfolio 7* (7*) at a moment ¢ € N,

C; (C}) is a consumption at any moment ¢ € Ny, x5 = xr ¢y
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(Xt(WA’CA) == Xt’rA — Cf‘) is a capital of superhedging portfolio with
consumption (7*,C*) ((7*,C*)) [2].

2. Quantile superhedging portfolio of European option. Let
us denote: (i) {x¢, Ft},en, — adapted random sequence with bounded
variation P-a.s. [5]; (ii) ¢ & X7 |t:0.

Definition. A pair (m,x) we call self-financing portfolio with
bounded variation, where 7 € SF. Capital of portfolio with bounded
variation (7, x) at a moment ¢t € Ny, denoted by X(W X), we define by
equality Xt( ™X) = X7 — Xt

Definition. By solution of the calculation problem for European
option with contingent claim fx (S,) and with quantile criterion of level
1 — a (where o € (0,1)) in incomplete market without transaction costs
with respect to any measure Q € Ry we mean self-finansing portfolio
with bounded variation (7%, x®) such that it’s capital Xt(ﬁa’xa)
moment N satisfies inequality Q (X](\?W’XQ) > fn (S.)) > 1—a. Portfolio
(m%, x%*) we will name quantile superhedging portfolio of level 1 — a.

at a

Theorem 2. Suppose fn (Se) is a Fn-measurable bounded random
variable and Ry NMy| > 1. Suppose also that for any o € (0,1) there

are Agj) (a) € RT, j =1,d,t € Ny such that with respect to any measure
Q € Ry the following inequality is true

ﬁ{ (J)Z/\,Ej) (a)} >1—a.

HDZ

Then there exists solution of the calculation problem for European option
with quantile criterion of level 1 — a.

Remark. Quantile superhedging portfolio of level 1 —q, i.e. (7%, x%),
has the form: v® = v/ — ¢y}, B¢ = Bf — cB, x& = CF — cC}. It’s initial
capital X{™ X" = ¢ (1 — X{f%)

3. Minimax quantile hedging portfolio of European option.
In presentation the solution of European calculation problem with
respect to the "worst-case" measure Q* ¢ Ry will be given (see. [2]). Tt
is proved that with respect to Q* initial incomplete market is complete
and Q* is discreet. This facts allowed us to construct new examples
of European option’s calculation with quantile criterion in incomplete
market with respect to Q*.
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Solution of two-parameter
consumption-investment problem

V. Babin
Moscow State University, Moscow, Russia

This work concerns the consumption-investment problem with sto-
chastic interest rate r, [1] and volatility 7; [2, 3]. The resulting model is
close to [4]. More detailed description see in [5].

We consider a model with parameters 7; u r;, whose dynamics are
driven by Cox-Ingersoll-Ross (CIR) model [6]:

dnt = l(N—m)dt+om/Ele(t),
dry = k(R —ry)dt + op\/r1dZs(t),

where 0,), 0, [, N, k, R are positive constants. Z;(t) u Z(t) are indepen-
dent standard Wiener processes. Furthermore it is assumed that 2IN >
0,27 and 2kR > o2.

Financial market consists of three assets, which are traded
continuously over [0,7]. One is a risk-free asset with interest rate r;
and other two are risky assets, whose price processes Si¢, So: satisfy
equations

ds

5 L (re +mme)dt + o14/n:dZ4 (t),
1

dSat

5 = (r¢ +nry)dt 4+ o9/11dZs (),
2t

where m, n, o1, o9 are positive constants.
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Assume that the investor has a power utility function «(C) = C7 /7.
At time ¢ he invests in risky assets and consumes fractions m o; and ¢
respectively.

Mathematically, the investor wishes to maximize the following
expected utility:

T
v v
UW,n,r)=  max _ E|a / 05 LW g1 o WT
v

(cs>0, 71,2 S)l,?:o Y

where e~% is a discount coefficient.
Using the dynamic programming principle, one can get the Hamilton-

Jacobi-Bellman equation

T
W) w2
H(W,n,rt) = max B, oz/e*‘ssudSwL (1—a)e 7L
(a0, w12 )7, Y ¥

Let us introduce the following notation

2
0212 — ~ (01l + aym)° o3k? —~ {(ogk + o.n)° + 20302

_D = =
! (L=mof 7 (1-)03
1 v oo, \/Df 0727()\1 — X9
)\1’2 = ; (l — ma—lm> + 5 X = 5 s
n n
1 v oy Vv Dy a7 (A3 — M)
A3,4 - 0'_7% <k — mgn) + 0_2 R Y = 5 .

Then the Hamilton-Jacobi-Bellman equation has a solution of the

w~
H(VVv nr, t) = ei(st—Fliv(nvrv t)a
Y

where

T
Flprt) = V0 / G, 5)ds + (1 — )/ OV G (1 1),
t

G(n,r t) = ef(t)n+g(t)r+h(t),
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and functions f(¢), g(¢) and h(t) are defined as

g (eX(T=8 —1) C AsAy (VT 1)
AleX(Tft) SV g(t) = AzeY (T—6) — )\,

ft) =

lN/f ds+kR/ ds——(T—t).

Optimal investor strategies are equal to

m a. /(U;Tat)
* t — 11
7"1(7%7"’ ) (]_ _7)0% + 01 F(Uﬂ“,t) ,
n O Fl(n r t)
. . _ Or L (1), T,
w3 (m,7,%) 0T-0% o2 Flp.rd)’
) at/(=7)
) = Fomn

Furthermore, assuming a number of restrictions one can estimate the
expected utility for infinite time horizon as

—~ wo K 1—v
U(W)nvr) - T (f) 6(177)(>\27H’>\47‘)

and the optimal strategies are equal to

m n o
L 2N T = R —Xan—A4r
m 7(1 —)o? + = 2; T2 7(1 ~ )02 + p 4; C e
where
2 2
AL — Mg 2IN/o, A3 — Ay 2kR/o: S

K= , L:——lN)\ — kR

( A1 ) A3 1— ? 4
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Futures position management based on
multistage stochastic programming

D.Y. Golembiovsky!, T.V. Bezruchenko?, and I.N. Lagoda3
L3 Moscow State University, ' Sinergy University, ' Bank ZENIT,
2Renaissance capital , Moscow, Russia

This report introduces futures portfolio management models. These
models take into account an initial margin for futures. They consider
a long-term investment horizon which can be transfered in the future
in a case of low probability to achieve the required portfolio value
at the end of investment horizon. Analyzed models allow trading in
futures of different expirations. Buy/sell commission is deducted from
the account for each trade. Variation margin is calculated each trading
day. Thus, such portfolio management models are close to the real market
conditions.

This work presents results of experiments, where the portfolio
includes futures of different expiration dates on a single underlying asset.
We consider three underlying assets: RTS index, Gazprom and Sberbank.
The prices of the relevant futures have been taken from Moscow exchange
website [1]. The price of the underlying asset is modeled using ARIMA-
GJR model. It is a GARCH model with a leverage effect which stems
from the fact that losses have a greater influence on future volatilities
than gains.

af =K+ 503_1 + ozef_l + ¢€%_1It—1 (1)

where I;_1 =0if ¢,1 > 0,and [;_1 =1if ¢,_1 <O0.
The problem of portfolio optimization is formulated as a problem of
multistage stochastic programming [2], [3]. Rebuilding the portfolio in
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accordance with the solution of the optimization problem is done every
trading day. For this optimization in a particular trading day a tree of
scenarios of possible price movements of the underlying asset with the
corresponding probabilities of the scenarios is built using ARIMA-GJR
model. Next, the problem of dynamic portfolio optimization is solved
using this tree. The results of the optimization are recommendations to
buy and sell contracts in the root node of the tree, which minimize the
risk of failure to achieve the required value of the portfolio by a certain
date.

The calculations in each simulated trading day on the futures market
include: commission for the transactions, calculation of variation margin,
monitoring the probability of reaching the required portfolio value.

Let u be a desired value of the portfolio at the terminal moment of
time;

gy is a value determined for each scenario v based on the following
inequalities:

g+ Wr, > u,9, >0 (2)

Then the optimization criterion can be written as follows:

N
min Z 9Dy, (3)
v=1

p, is the probability of the scenario v.

This criterion presents a minimum of the expectation value of g,. So,
solving the optimization problem the portfolio with minimal expected
possible gap is constructed.

The result of modelling 2 months trading for portfolio which included
futures on Sberbank is presented in Fig. 1. The required capital was
120000 roubles, the initial capital was 100000 roubles,the commission
per trade was 2 roubles, maintenance margin was 1400 roubles for a
contract. For a terminal moment of time the value of the portfolio was
117334. It is less than the required value but still the portfolio showed a
profit.

On the whole, we simulated 1-year traces of portfolio management
for RTS index futures, futures on Gazprom and Sberbank with different
maturities.
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Fig. 1. Result for portfolio of futures on Sbherbank.
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Maximum likelihood estimator for default
rate of the credit portfolio

V.V. Levin, S.Y. Guskov, and S.A. Khonov
Bauman Moscow State Technical University (BMSTU) and Moscow
Institute of Electronics and Mathematics (MIEM HSE), Moscow,
Russian Federation
Banks must calculate reserves for possible credit portfolio losses in
accordance with Basel II requirements [3] by the following formula (1):

Reserves = EAD x PD x« LGD, (1)

where FAD — the Exposure at Default, PD — Default Probability of
credit; LGD (Loss Given at Default) -— non-payment of funds by credit
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when default occurs.

Banks usually uses different delinquency indexes for control of default
risk level.

There is offered to use the maximum likelihood estimator for samples
from the stratified set [1,2] to estimate the credit portfolio default rate.

Let tg < t; < -+ < t; < ty are the given calendar date, here the
month’s last days are considered. Let V;(¢) is a vintage ( = set of loans,
opened during time period [t;—1,%;]) at the current moment ¢, and V; is
the vintage V;(t) at the moment ¢t = ¢;, i =1,...,N. It is clear that
Vit)nVi(t) =0,i# 5, Vi(t) =0, ift <t;,i=1,...,N.

UN | Vi(t) is a credit portfolio at moment t.

For vintage V; = V;p UV, np, where V; p(V; np) is the set of
defaulted (non-defaulted) credits in the vintage. Quantity K(V; p) of
defaulted credits and quantity K(V; np) of non-defaulted credits in
vintage V; are unknown, but vintage size K(V;) = K(V; p) + K(VinD)
is known. Let §;; is the rate of observed defaults in V;(t) at the moment
tyi=1,...,N. ~

Maximum likelihood estimator S;; (from [1,2]) might be used for
assessing default rate of a credit portfolio vazl Vi(t) at the moment ¢.

It is offered the following maximum likelihood estimator of default
probability PD, for the given moment ¢:

N N
PD; = (Z@K(%(t))) /YK (Vi)
i=1

i=1
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Bounds on the value of American option on
difference of two assets”

V.V. Morozov and K.V. Khizhnyak
Moscow State University, Moscow, Russia

An American call option on the difference of two assets (a two side
Margrabe option [1]) provides its holder the right to exchange one asset
for another at any time prior to expiration 7' at strike K;, i = 1,2
depending on the asset. An upper bound is constructed using a method
based on the integral formula of option value [2]. A lower bound is derived
by Monte Carlo simulations using exercise boundary approximation as
a decision rule.

We consider the asset values S;(t), i = 1,2 satisfy the equations of
geometrical Brownian motion dS;(t) = S;(t)(c;dt + o;dz;(t)), i = 1,2,
where z;(t), ¢ = 1,2 are standard Wiener processes (z;(0) = 0) with
constant correlation |p| < 1, r > 0 is a bank interest rate, a; = r — J;
are the average rates of return, o? are the average volatilities, §; > 0
are the dividends paid on the ith asset. The payoff at time ¢ is given
by f(S(t)) = E?g(sz(t) — S3_4(t) — K;)+ where a; = max(a,0) and

S(t) = (S1(t), S2(1)).

Let S = (571, 52). The initial option value F(S,t) can be determined
as an upper bound of mean discounted payoffs over all the exercise
decision rules: F'(S,t) = sup, ¢ 1 E[e="=0f(S(1))|S(t) = 9).

The optimal decision rule is given by [3]

7 =min (t | F(S1(t), 52(t),t) = f(S1(2), S2(t), 1), T)
and defines the immediate exercise region
E@) = {S eRL | F(S,t) = f(S,t), max(Si(t), S2(t)) > 0} .
It is shown that the immediate exercise region £ consists of two

disjoint subregions:

1=1,2.

3

Ei(t) = {S € E(t)‘ Si(t) — Ss_i(t) > M}a

2

Let G;(S3_i,t) denote the border of the subregion &;(t), i = 1,2. It is
shown that G;(Ss—_,,t) are convex nondecreasing functions and the graph

*The reported study was funded by RFBR according to the research project Ne
16-01-00353 a.
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of G;(S3—;,t) approaches asymptotically the line S; = ¢;(¢)S3—; + w;(¢),
where ¢;(t) > 1 and wy(t) = (K1 — K2)/2, wa(t) = —ca(t) (K1 — K2)/2
in case of K1 > Ks.

To derive the coefficients ¢;(t), w;(t) and derivatives G;(0,t) the
integral formula of option value is used [4]:

, T
F(S,t) = —|—Z/e rt / 5 SpedittoiVin:
0

i=1 M; ()

_53_1,53_1,6&3—1'1‘/-1—03_7:\/fms_i _ TKi) V(x)dadt, i = 1,2,

My(t) = {w € RS | St t4onvios 5 Gy(Sy_seittonvimo L (1)

where C(S,t) = e="(T=YE[f(S(T))] is a price of corresponding European
option, x = (x1,z2), ¥(x) is a bivariate normal density function. Let

2
di:ai_%7 02:0%—2/)0102—1—0'%, & =01 —a, &=3da7 — s,
1 i/ K; ;i 2\ . 1 K A T
di(S;) = n(S;/K;) + (&; + 07) di(s)) = n(S;/K;) + (&; + poio2) |
Uz‘\/T U“/T
P - 1 ) / i )
0= —F—, 1, =7r—0q;, ((=——r8——, bj =0, b; = (a; + 7)),
1— 2 ¢ o /12 ¢ ( )G
; In(e) + (-6 + )T
0i,3—i = 0; — Q3—; — po102, d(c;) = 7).
# 3-i = 010, d(c:) —
- In(¢;) + 13- — T In(c; 3=iaT
d(ci):n(C) (=1)°"'a-%) ’d(ci):n(c)ju( ) |
VT T
bil - (&l + PU102)Q, A; - I(a” bm 03—, 07 672,377;) - I(a7 b;v O, 07 57,)a
K;
Ai = m, Ais—i=1I(a,b;,03_;,0,73_;) — I(a,b;,0,0,7),

‘d(b;ff) ] 7 T ||

a n

I(ab,e,d,8) = ——— |e” @0 ® [/ 51— — -
Vi a’+1 (a>+1)T

I R N L |d]|
a’?+1 (a2 +1)T

n=(b+ac)®+ (—=c* +26)(a* +1) > 0.
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T + - )
N (e _|_
a®+1

1 b _avia/im n(0)T d
— [ == —2n(d) +1 2 - -
+2< ()+>e ( 2+1 @+ DT

db—d+/1(0)
S RN T Pty ”2(0)T - d :
2\ v/n(0) a?+1 @+ )T

where 7(0) = b2 + 2§(a®> + 1), § > 0, d > 0, h(0) = 1/2, h(d) = 1 if
d>0.
It is shown that G;(0,0) is equal to

J(a,b,d,8) = h(d) —e TP (

1— J(a,b),0,85_;) — e~%3-T®(d;(G:(0,0)))
L —J(a,0:,0,8) + 8:GA; 5 — NiGii3—i — e~ 9T ®(d;(G(0,0)))

The coefficients ¢;(t) and w;(¢t), i = 1,2 for any 0 < ¢ < T are derived
as a solution of the system of nonlinear equations.

Note that function G,;(S3—i,t) =  max[G;(0,t)S3_; +
G,(0,t),¢;(t)Ss—i + wi(t), (03—:S3—; + 7K;)/d;] is not greater than
Gi(S3_i,t), i = 1,2. Let M; be M; substituting G;(Ss_;,t) for
G.(S3_;,t). Then M; is contained in M;. An upper bound of the option
value can be derived by substituting M; for M; into (1).

For example, let 7 = 0.05; §; = 62 = 0.01; 01 = 0.2; 02 =0.1; p =
0.5; K1 =8; Ko =5; 81 =15;5, = 5; T = 3 then: ¢1(0) = ¢2(0) =
1.775; w1 (0) = 13.97; wy(0) = 5.39.

The lower bound of the option is calculated using the exercise rule
79 = min[min{¢|S(¢) € My (t)J M2(t)}, T] and Monte-Carlo simulation.
An upper bound is equal to 3.428, and a lower bound is equal to 3.424.
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On VaR-type risk measures under
hedging of American contingent claims*

AL Soloviev
Lomonosov Moscow State University, Moscow, Russia

In this study we research game problems between seller and buyer
of an American contingent claim, discuss properties and optimization
complexity of value-at-risk measure and expected shortfall and develop
decomposition methods to solve these problems much more faster.

We consider a multiperiod model of the financial market which leads
to a large scale nature of the given problems because a number of
buyer’s strategies grows overexponentially. Therefore, decomposition of
these games turns out to be our fundamental goal. As for the main
optimization problem, we look for the optimal investment strategy which
produces the minimal losses associated with imperfect (or incomplete)
hedging of American contingent claim. It consists in finding a minimax
value of a specific zero-sum game.

We suppose that security trading in financial market occurs in deter-
ministic moments of time and a market has a finite number of scenarios
(however, it may be quite huge). There are no transaction costs during
the trades. The market consists of a few tradable securities with known
probability distribution of prices. One security is riskless (a bank deposit
or a bond), it has strictly positive prices. The number of risky securities
(stocks) can be any.

The set of states A of the market has a tree structure. It is divided
into pairwise disjoint subsets of states A; which may occur at specific
time moments ¢t = 0, ..., T. The set Mg contains the only element — a root
of the tree denoted by 0. Every node n € N}, where t = 1,...,T, has a
unique parent node.

We state a zero-sum game between two players: a seller of the contin-
gent claim and its buyer. The seller is an investor in wide sense, he builds
a trading strategy to hedge the American contingent claim. The buyer

*The reported study was funded by RFBR according to the research project No.
16-31-00070 mol _a.



124 OR in finance and banking

exercises the claim in some moment of time (i.e. obliges the seller to pay
the claim value using his right specified in a contract).

The main feature of an American contingent claim is an uncertain
moment of exercise. So, American claims may be exercised by its buyer
at any time ¢t = {0, ..., T} up to expiration date. Exercise time is usually
considered as an uncertain factor in investment problems. Besides, it
means stopping time for random processes of the claim and the losses.
Next, we define strategies of players.

Investor strategy is a self-financing portfolio process, i.e. he does
not spend money and does not get any revenue from outside. Portfolio
value process V = {V(t)} corresponds to a trading strategy. A random
variable V() takes values V,, equal to scalar products of price and
portfolio vectors. We suppose that there are no arbitrage opportunities
in the market, i.e. there are no trading strategies, such that the investor
loses nothing and yields a positive profit with a positive probability. We
consider only admissible trading strategies, the ones which prevent the
investor from ruin.

Buyer’s strategy is a moment of time when the contingent claim
is exercised. Let us describe it with a random variable 7. For each
sequence of consecutive states (ng,...,nr) it produces the only state,
where stopping occurs. Let A, be a set of these states. We show that
a set of buyer’s strategies grows overexponentially while a number of
trading periods T increases.

An American contingent claim is described with a non-negative sto-
chastic process F' = {F(t)}. The examples of a contingent claim are
payments on option, forward or futures contracts. Portfolio strategy
hedges an American contingent claim F' exercised in time 7 if the
portfolio values V,, > F,, for all n € N... Perfect hedging (with probability
one) of an American contingent claim generally requires considerable
initial endowment from the seller.

Suppose that the seller does not have a necessary sum for perfect
hedging and decides to manage with less initial endowment taking the
risk of future losses. So, if the claim is exercised in state n € A of the
market, then seller’s losses are equal to (F,, — V;,)T = max{F,, — V,,; 0}.

In the first part of this research we propose value-at-risk (VaR) as a
risk measure to estimate the losses from imperfect hedging. It is equal
to the minimum value such that the expected losses do not exceed it
with a specified probability. In other words, VaR corresponds to the
amount of uninsured risk which the seller can take; see [2]. This measure
is recommended primarily for monitoring market risks and effectiveness



OR in finance and banking 125

of hedging strategies. VaR approach of risk estimation was also widely
studied in [3]. We evaluate seller’s losses in exercise time 7 using the
value-at-risk function:

VaR, ((F(r) — V(r))") = min{B € R|P((F(7) — V(r))T < B) > a},

where «a is a preset level of significance.

We state the optimization problem from the seller’s side to find
an optimal investment strategy V' which imperfectly hedges contingent
claim F and minimizes a loss function VaR, under uncertain exercise
time 7. The given problem consists in finding a minimax value of the
game and can be formulated in the following way:

m‘i/n ma¥VaRa((F(T) - V(m))*)
TE
Vo >0,VneN.

We incorporate binary variables x which characterize the decisions
coupled with probability constraints in a definition of VaR and formulate
the original problem as a mixed-integer programming problem. Then,
we prove the existence of optimal trading strategy such that z* has a
monotonic nature over time. Namely, we show that

x*(t) > z*(t+1), Vt=0,....T — 1.

Then, we analyze the similar optimization problem using expected
shortfall as a risk measure (see [1]) and discuss this problem from the
buyer’s perspective. It allows us to take into consideration not only the
fact of losses but the amount of them as well. Here the problem consists in
finding maximin value. We show that considered utility functions usually
but not always have saddle points.

The obtained results allow to substantially decrease a number of
constraints in the original problem and let us turn to an equivalent
mixed integer problem with admissible dimension. Thus, we exclude the
uncertainty associated with the time of exercising the contingent claim.

The outcomes of this study can be useful for software systems
development in financial institutions which deal with valuation and
hedging of contingent claims, building trading strategies. Consideration
of discrete models of a financial market for dealing with investment
problems allowed to apply methods of mathematical programming and
game theory.
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Impact of risky investments on the solvency

of insurers in a model with stochastic
premiums

T.A. Belkina*, N.B. Konyukhova**, and S.V. Kurochkin**
*Central Economics and Mathematics Institute of RAS,
**Dorodnicyn Computing Center of RAS FRC CSC of RAS,
Moscow, Russia

We consider the mathematical insurance model with stochastic
premiums and risky investments; for its detailed and complete
investigation, see [1-3] and references therein.

1. For the modified Cramér-Lundberg model with stochastic
premiums, the continuous-time risk process has the form

Ni(t) N(t)
Ry=u+ Y Ci—> Z, t>0. (1)
i=1 j=1

Here, R; is the surplus of an insurance company at time ¢; u is the
initial surplus (IS); the first sum on the right-hand side represents the
aggregate premiums up to time ¢; N1 (t) is a homogeneous Poisson process
(HPP) with intensity Ay > 0 (ENy(t) = At, N1(0) = 0) that, for any
t > 0, determines the number of premiums charged over the time interval
(0,t]; C1, Cs,...are independent identically distributed (IID) random
variables with a distribution function G(y) (G(0) = 0, EC7 = n < c0)
that determine the premium sizes and are assumed to be independent of
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N;(t); and the second sum is the aggregate claims; N (¢) is a HPP with
intensity A > 0 (EN(t) = At, N(0) = 0) that, for any ¢ > 0, determines
the number of claims over the time interval (0,t]; Z1, Za,...are IID
random variables with a distribution function F(x) (F(0) = 0, EZ; =
m < oo) that determine the claim sizes and are independent of N (t).
The aggregate premium and aggregate claim processes are also assumed
to be independent.

Let now the surplus be invested continuously in stocks with prices
described by the stochastic differential equation (SDE) dS; = Si(adt +
bdw;), t > 0. Here, S; is the stock price at time ¢, 0 < a is the
expected stock return rate, 0 < b is the volatility parameter, and {w;}
is a standard Wiener process, or a Brownian motion.

Then the dynamics of the surplus (resulting risk process) is described
by the initial value problem for an SDE:

dX, = X, (adt +bdw,) +dRy, >0, Xo=u. (2)

Here, X; is the portfolio value at time ¢ and Ry is the risk process (1).
As a measure of the solvency of an insurance company, we use

the survival probability (SP) ¢(u) (as a function w) in infinite time:

o(u) = P{X; > 0,t > 0}, where Xy = u for u > 0; for u < 0, we set

o(u) = 0.
The equation for ¢(u) of the resulting risk process (2) has the form:

(b%/2)u”¢" (u) + aug' (u) = A [p(u) =[5 o(u - 2)dF (z)] +

A1 [o(u) — [T e(u+y)dG(y)], ueRy.

2. Assuming that the premium and claim sizes have exponential
distributions, F(z) = 1—exp (—z/m), G(y) = 1—exp (—y/n), m,n > 0,
we formulate the constrained singular nonlocal problem (see [1,3]):

(% /2)u@" (u) + aug’ (u) = Alp(u) — (Jmep)(u)]—

(3)

=Mlp(u) = (Inp)(w)] =0, u>0,
| Jim o(u)| < oo, ulggo[w'(U)] =0, (4)
A+ A1) ulggow(w = M (1n9)(0), (5)

0<oeu) <1 Yu € Ry, (6)
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li =1 li "(u) = 0.

Jim e(u) =1, lhm ¢'(u)=0 (7)
Here, J,, and I, are Volterra and non-Volterra integral operators,
respectively,

() = o [ ol ) exp (- fm)da,

1 oo
(o)) = 3 [ olutpyesp (=u/n)dy,
where J,,, I,: C[0,00) — C[0,00) and C]0,00) is the linear space of
continuous bounded functions on R .

The theorem stated below follows from the results of [1-3].

Theorem. Let all the parameters a, b>, n, m, A\, \1 be fized positive
constants, and let the stock reliability condition be satisfied: 2a/b* > 1.
Then the following assertions hold:

(I) The constrained singular nonlocal problem (3)—(7) has a unique
solution (u), it is a nondecreasing function on Ry and indeed
determines the SP in the considered insurance model.

(I) As u — +0, the behavior of the solution derivatives depends on
the relations between the parameters in particular on a sign of the "risk
factor” iy = a(m —n) + \in — Am: (1) If X+ A1 > a, then there exists
a finite limy,—, 1o ¢’ (u) = D1; moreover, (a) |lim,— 19 ¢" (u)| < oo if and
only if X\ + A1 > b% + 2a; more precisely, in this case lim,_, o " (u) =
D1Dy = —Dy i /[mn(A+ A1 — b* — 2a)], so that, if Dy > 0, then Dy <0
for i, > 0 and Dy > 0 for i, < 0; (b) if A+ A1 < b2 + 2a, then ¢ (u)
is unbounded, but integrable at zero. (2) If a > X+ A1, then ¢'(u) is not
bounded as uw — +0, but remains integrable at zero.

(III) For large u, the solution p(u) can be represented as

o(u)=1- K ul=2e/% (14 o(1)], U — 00,

where K > 0 is a constant (in general the value of K cannot be found
by local analysis methods).

(IV) If \+ A1 > b% +2a and i, < 0, then ¢'(u) reaches a positive
mazimum at some point u = u > 0, while the solution p(u) has an
inflection at this point (it is the most risk case).

The study of this problem demonstrates that investments in risky
assets for small and large IS values have opposite effects. For large IS
values, the use of risky assets at a constant investment portfolio structure



130 OR in insurance and risk-management

is not favorable from the point of view of survival, while, for small IS
values, risky assets are an effective tool for minimizing the overall risk
and, hence, for increasing the solvency of the insurer.
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Risky investments and survival in the dual
risk model

T.A. Belkina*, N.B. Konyukhova** and B.V. Slavko***
*Central Economics and Mathematics Institute of RAS,
**Dorodnicyn Computing Center of RAS FRC CSC of RAS,
***National Research University - Higher School of Economics,
Moscow, Russia

We consider the dual risk model (see, e.g., [1]), where the surplus or
equity of a company (in the absence of investments) is of the form

N(t)
Ry=u—ct+>» Z, t>0. (1)
k=1

Here R; is the surplus of a company at time ¢ > 0; w is the initial
surplus, ¢ > 0 is the rate of expenses, assumed to be deterministic and
fixed; N(¢) is a homogeneous Poisson process with intensity A > 0 that,
for any ¢t > 0, determines the number of random revenues up to the time
t; Z (k= 1,2,...) are independent identically random variables with a
distribution function F(z) (F(0) = 0, EZ; = m < o) that determine
the revenue sizes and are assumed to be independent of N(¢).
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Let now the whole surplus be continuously invested into risky asset
of which price S; follows the geometric Brownian motion

dSt = /J,Stdt + O'StdBt, t 2 O,

where p is the expected return rate, o is the volatility, B; is a standard
Brownian motion.
Then the resulting surplus process X; is governed by the equation

dXt = /Jdet + O'XtdBt + th, t Z 0, (2)

with the initial condition Xy = u, where R; is defined in (1).

Denote p(u) = P(X; >0, t > 0) the survival probability (i.e., the
probability that bankruptcy will never happen).

The infinitesimal generator A of the process X; has the form

(AD)0) = 5202 (0) + Flen = = A+ [ fus2)ar(e),

for any function f from a certain subclass of the space C?(R,) of real-
valued, twice continuously differentiable on (0, c0) functions.

For the case of the exponential revenue sizes, we establish the
following statement.

Theorem. Let F(z) = 1 —exp (—z/m), all the parameters u, o2, m,
¢, \ be fized positive constants, and let the stock reliability condition be
satisfied: 2p1/0? > 1. Then the following assertions hold:

(I) the survival probability ¢(u) is the solution to the following
singular boundary value problem for the integro-differential equation
(IDE) with non-Volterra integral operator:

(Ap)(u) =0, u>0, (3)
Jm () =0, lim o(u) =1; (4)
(II) this solution is unique and satisfies the conditions
0<p() <1, wueRs,
. 12 .
0< ul—lfgo@ (u) < oo;

(III) the following asymptotic representations are valid:

o(u) ~ D1 (u—l—ZDkuk/k) , u~+0,

k=2
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where D1 = ¢'(40), Dy = (u — A+ ¢/m) /c,
Dy = [Do(2p+ 0> — XA+ ¢/m) — p/m] /(2¢),

Dii1 = [Di(k(k —1)0?/2 + pk — X+ ¢/m)—
—Di—1((k —2)0®/(2m) + p/m))/(ke), k=3,4,...,

and )
ou) =1—Ku'"2/7 (14 0(1)), u— oo, (5)

where K > 0 is a constant;

(IV) as u — 40, the behavior of the solution derivatives depends
on the relations between the parameters, in particular on a sign of the
coefficient iy = (A — p)m —c: (1) if i, > 0, then lim,— 0" (u) <0,
moreover, the solution ¢ is concave on Ry; (2) if 4. < 0, then
limy, 40 ¢”(u) > 0, the solution ¢ is convex in a some neighborhood of
zero and has an inflexion point.

For the corresponding results to the classical Cramér-Lundberg risk
model, see, e.g., [2]. The asymptotic representation (5) for the survival
probability of the process (2) (in the dual risk model) with exponential
distribution of the revenue sizes was obtained earlier in [3], where the
renewal theory was used to obtain some upper and lower asymptotic
bounds for the ruin probability. The regularity of the survival probability
was studied in [3] using a method based on integral representations. Note
here that the dual model case is rather different from the classical case
because the change of two signs to the opposite ones in the equation
defining the dynamics of the reserve leads to special technical compli-
cations (see [3] in details). We use other approach based on so called
sufficiency theorem for the survival probability and the existence theorem
for the corresponding singular problems for IDEs (see [4]). This unified
approach eliminates need to proof regularity of the survival probability as
well as to use its upper and lower bounds. Moreover, the solving of above
singular problem for IDE leads to calculation of the survival probability
on all non-negative semi-axis. We reduce the problem (3),(4) to a certain
initial problem from infinity for some second order ordinary differential
equation with respect to the derivative of the survival probability with
a normalizing condition. As a result of calculations, we conclude in
particular that if the value of safety loading (Am — ¢) in the model (1)
is negative or sufficiently small and the surplus is small too, then the
use of the risky investments allows to increase significantly the survival
probability.
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Optimization of marketing strategy of a firm
with multiple distribution points of goods

D.V. Denisov and V.V. Latiy
Lomonosov Moscow State University, Moscow, Russia

We present the mathematical model of a firm selling certain product.
The feature of this firm is the structure: the firm is divided into several
distribution units (for example, department stores) each of which aims
to achieve the best sales performance in comparison with other units.
Each point has its own marketing budget, approved by the head office,
which can not exceed the total marketing budget. The overall aim of the
company is «fair» development of all units. Hence, there is the following
problem of the budget allocation for all units ¢ in the set A:

pDi(c) — ¢; — max
Yieati < Co

where p is the price of product, D;(c) and ¢; are the demand for product
and commercial expenses for unit ¢ accordingly, Cj is the budget. Thus,
there is a kind of competition between units for share of the budget.

The main results of this paper are 1) the proof that there is the unique
special solution of described problem and 2) the proof that the problem
of «fair» marketing budget allocation is equivalent to the problem of
maximizing the total profit:
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{ ZieA(pDi(c) - Cz') — max

c=(ci)ica
ZieAci <Gy
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The two-level model of environmental
protection

V.A. Gorelik and T.V. Zolotova
Dorodnicyn Computing Centre, FRC CSC RAS, Financial University
under the Government of the Russian Federation, Moscow, Russia

The proposed regulating mechanisms use unified and differentiated
environmental payments under the presence or absence of quotas and
fines control.

Suppose that the regional center may regulate ecological payment
rates p = (p1, ..., Pm) (reduction of payment may be a result of
offsetting funds or budget exemptions), where p; is fee for a negative
impact on unit volume y; of j-th pollutant, j=1, ..., m. Assume that
the volume of the pollutant is proportional to the value of the relevant
production factor y;; = vi;x; = 25:1 VijsTis, where v;; = (Vij1, ...,
Vijs, - -+ Yijs) is the vector of proportional coefficients for j-th pollutant,
Yis = (Vitsy « -+, Vijsr - ~ims) is the vector of proportional coefficients
of all pollutants for i-th enterprise, applying s-th production factor,
x; = (®a, ..., Tis, ..., T;is) is the vector of production factor of i-
th enterprise. Let K;, i=1, ..., n, be financial resources of enterprises,
q=(q1, ---, qs) be the vector of prices of production factors (resources).
Then the set of control of i-th enterprise is X;(p) = {z;|Px; < K;, x; >
0}, i=1, ..., n, where

m m m
P=(qi 4> pj¥ijt, = Gs+ Y PiVijss - 45+ D DiYiss)-

j=1 7j=1 j=1

Output of each enterprise is defined by the vector production function
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fi(x;), satisfying conditions f;(0) = 0, af‘(” >0, 58 Lelwi) ¢ <0 e +
0, where fir(z;) is k-th component of the vector functlon filxs).

If ci is the vector of prices for all products of i-th enterprise, then
the problem of maximizing its gross income is

Gi(x;) = Aifi(x;) > max (1)
z,€X,;(p)
Its solution is the optimal strategy of the i-th enterprise z¥(p).

Let the center seeks to increase the total gross income of enterprises,
i.e. the target function of the center is F(z;) = Y i, a;Gi(x;), where ai
are positive weights, for example, tax payments to the regional budget. It
is also assumed that the center interests in a rational use of the region’s
resources (energy, natural, labor). Then the problem of the center is

n
)= aiGi(a}(p)) - _ max (2)
; e Pl S, 20(pi) <X
where X is the limit of resources amount. The solution of problem (2)
gives the optimal strategy of the center p°.
Let’s consider the problem of centralized scheme control

x) = Z a;Gi(x;) — max (3)
i=1

x| >0, w1<X

its solution is vector =} = (z}y, ..., =i, ..., Tig)-
We introduce the Lagrange function for problem (3) L(z,u) =

— Y7 aiGi(w) + p(X — Y0, ), where p = (s, ..., ps) is the

vector Lagrange multiplier, and consider for i-th element of lower-level

the system of linear equations with unknown k;, p; = (pi1, ..., Pim):
m

kiﬂs =qs+ Zpij’yijsv s = ]-7 ey Sa Kl = kzﬂx: (4)

j=1

Denote pg; environmental payments vector for i-th enterprise, defined
by legislation.

Theorem 1. Let functions G;(z;), i=1, ..., n, be continuous,
strictly concave with respect to all their variables, and have continuous
positive derivatives with respect to z;, the system of linear equations (4)
has positive solution such that p; < pg;, ¢ =1, ..., n. Then by choosing
differentiated environmental payments pi for lower-level elements in
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problem (2) the center provides the global maximum of its criterion, i.e.
achieves perfect reconciliation of interests.

Assume that the center has the ability to assign only unified environ-
mental p and additionally permissible levels of pollution (quotas) and
fines for exceeding these quotas. The amount of fines z;; per unit for the
excess of j-th type of pollution and quotas 8; = (Bi1, ..., Bij, ---, Bim)
determined by the center for each enterprise satisfy conditions z;; > 0,
Bi > 0,i=1, ..., n, > ., Bij = Bj, where B; —is fixed value, means the
maximum permissible level of pollution by j-th indicator for the whole
region. Denote z; = (zi1, ..., Zim),2 = (21, ..., zn), 8= (61, ..., Bi,

.5 Bn). The target function of the center is F'(z) = Y. | a;Gi(x;).

As a fine function we take the total excess on all types of pollution.

Then the problem of i-th enterprise is

A;fi(x;) — max R 5
fi(wi) I L (5)

X{(p, 2, i) = {wi| Pz + > 255 max(0, vija; — Bi) < Ky i > 0}

j=1
We introduce the vector of the maximum permissible levels exceeds

w; = (Ws1, ..., Wim). Then problem (5) takes form
Gi(w;) = Aifi(z:i) — max (6)

(wi,wi)EXi(p,2i,8:)

Xi(p, zi, Bi) = {(wi,wi) > Oz — Bij < wiy,
Px; + Z;nzl zijwij < Ky, j =1, ..., m}. Let 29(p, z;, B;) be the solution
of problem (6). The problem of the center optimal control is

o;G 1 ,2iy i) = max 7
Z 2 (p, i 1)) WIE (7)

Q= {(pazaﬁ) > 0| Z?:l 6ij = Bj’j =1, ., m, Z?:l x?(pvziaﬁi) <
X}. Denote the center optimal control (p°, 29, 89).
~ We introduce the Lagrange function for problem (7)
Li(wi,wi, ity Ni2) = Gi(@i, wi, p, 21, Bi) + X (K — Py — 3700 zijwig) +
E;nzl /\ijg(wij + ﬁij — 'yijxi), where /\il Z 0, /\1‘2 Z 0 are Lagrange
multipliers, A;2 is m-dimensional vector.

The problem of centralized control has the form

Z a,;G ) — max, (8)

UCEQl
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n n
=1 =1

Denote the solution of problem (8) by =} = (z}, ..., =k, ..., Tig)-
Consider the system of equations:

A Py + 37000 Nij2(Bij — vii2f) = A Kiy, A Ps = pyg /e,
Zj:1 Aij2Yijs = (Zj:l M2j D iy Yijs)/ i = 0, (9)
i=1, .., n s=1, .. S

Denote the fixed vector of utmost environmental payments, defined
by the legislation, by pg.

Theorem 2. Let functions G;(z;), i=1, ..., n, be continuous,
strictly concave with respect to all their variables, and have continuous
positive derivatives with respect to zis, the system of linear equations
(9) has positive solution A1, A2, p, B such that p < pg. Then by choosing
unified environmental payments p, quotas 5 and fines z and for lower-
level elements in problem (9) the center provides the global maximum
of its criterion, i.e. achieves perfect reconciliation of interests.

Dynamic model of collective decision making

1.V. Korzitsin
Moscow Institute of Physics and Technology, Moscow, Russian
Federation

In this work the already constructed in [2] model is generalized
on continuous time case and applied to some elementary examples. In
[1],[2] the author speaks about model, describing process of collective
decision making. He fixed one state and crowd of people; everybody
from this crowd can go to this state or can remain. This state we will
call main state. Everybody has his own opinion about switch to this
state generated before communication with other people. This opinion
will estimated by a—probability of preparedness to go to the main state.
After communication « will change. This new probability we will call
p. Also everybody has his own characteristics describing his individual
features. It means that member numbered 7 is described by:

e 1i;—probability of independent decision making;

e )\;j—probability of following member numbered j in decision
making;
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® (v,
® D;.

Using this parameters author created the main system of equations:
N
pi = mici + (1= ) Y Aijpj, i=1,..,N. (1)

Parameters \;; are bounded by:

2

> Aj=1, \i=0, i=1.N. (2)
j=1
Here p; are variables. System (1) is generalized on continuous time case:

dpi (t)
dt

N
= pi(ai —pi(t)) + (1= i) D Nij(pi (1) =pi(t)), i=1,.,N. (3)
Jj=1

In system (3) «; are initial conditions and p;(¢) are changing during the
time. So we get Cauchy problem. This Cauchy problem has a unique
correct (p;(t) € [0,1]) solution. If x; > 0 Vi, time-independent solutions
of this system (3) are asymptotically stable. (3) is applied in quite
ordinary case: when crowd of people can be separated on three groups.
First has negative opinion about main problem, second has positive
opinion about main problem. The rest of people are not sure. As a result
I got solutions quite good coordinated with reality.
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Socialization as an effective mechanism of
strategy alteration from individual to
cooperative: some psychophysiological

aspects”

I.S. Menshikov! 2, O.R. Menshikova!, A.O. Sedush!, T.S. Babkina®:3,
and E.M. Lukinova3
LMIPT, 2CC RAS, 3Skoltech, Moscow, Russia

The classical economic theory suggests that economic agents are
rational, i.e. they make decisions according the maximization of their
own profit. The experimental economics allows checking the validity of
this statement in laboratory conditions. People evade rational strategies
in some situations and choose the ones that lead to less profit at this
particular moment, but have the perspective benefit for the society
in general. These strategies we call cooperative, prosocial and leading
to equality. Since the choice of cooperative strategies contradicts the
rational choice theory the question arises: what motivates some people
still follow the cooperative or prosocial strategies? An important question
that still remains: how can we accomplish the strategy alteration from
individual and rational to cooperative and prosocial?

It is known from the social psychology that not all decisions are
made according to the expected future reward. There is some moral
satisfaction from the fact that the trust is established in group and all
participants receive the same payoff. Thus, we assume that the utility
function depends on the social component that covers the dissatisfaction
of receiving fewer benefits.

The MIPT Experimental Economics Laboratory and Skoltech are
used to carry out all experiments. The treatments comprise knowledge
from experimental economics and social psychology [1]. Each experiment
consists of a different set of 12 students, pre-selected before the
experiment to be unfamiliar with one another. In the laboratory, we
studied the nature of such social qualities of a person as cooperativness,
fairness, trust, gratitude in the groups socialized differently. We used
the following 2x2 games: Prisoners’ Dilemma, Ultimatum Game, and
Trust Game. The research goal is to find and study the mechanism that
effectively alter the participants strategies from individual to cooperative
without using social or material punishments. In course of our studying
we discovered such a mechanism - a group socialization.

*This research is supported by the grant RFFI 16-01-00633A.
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Each experiment is divided into 3 consecutive phases: anonymous
game phase in group of 12, socialization phase, and socialized game phase
in group of 6 or 4. We use different variants of socialization. However
we always include the introduction step and division participants on two
or three equal groups and some teamwork in newly formed groups. The
game phases consist of a number of periods in a randomly formed pairs.
On the first phase pairs form from the total sample of participants, on
the third phase pairs form within newly formed groups.

To study changes in people’s attitudes after the socialization
we use an interdisciplinary approach combining methods from
experimental economics, social psychology and psychophysiology. During
the laboratory experiment we measure the stabilograms [2] and RR-
intervals of all participants. These data are compared with each other,
with the behavioral characteristics and data from psychological tests [3-
4].

Results.

1. Socialization promotes alteration of the participants’ strategies
from individual to cooperative.

2. The effect of socialization is different between sexes.

The initial (before socialization) level of cooperation among females is
equal or higher than among males (on average § = .02, N,,, = 202, Ny =
122, wilcoxon-test, p-value = .05). Whereas after the socialization the
percentage of cooperation among males is higher than among females (on
average § = .15, N,,, = 202, Ny = 122, wilcoxon-test, p-value = .001).

3. The psychological type effects the change of social indicators after
socialization. We find psychological types with the highest percentage of
the transition from individual strategies before to cooperative strategies
after socialization.

4. The relationship between energy and entropy of the participants
during an economic experiment, stress levels (an indicator, which
can be derived from measurements of RR-intervals) and psychological
personality type is established.
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The asymptotic solution of a singularly
perturbed initial boundary value problem

K.O. Semenov
Dorodnicyn Computing Center of FRC IC RAS, Moscow, Russia

This work involves the problems of solving the tasks arising in the
study and description of the processes occurring in the laser targets [1].
An understanding of such processes makes possible the implementation
and control of technological procedures of thermo-nuclear synthesis from
the creation of laser target to their delivery to the place of ignition and
management the launch of a thermonuclear reaction. The following is
a mathematical model of the single-layer shells filling with gas, which
is reduced to linear singularly perturbed initial-boundary value problem
of parabolic type [2]. Processes such as cooling of the target and the
problem of degradation of the fuel layer by heating the target in the
reactor chamber by electromagnetic radiation [3] are reduced to a similar
class of problems.

Below we going to state the initial boundary value problem for the
function u(z,t), x € [0,1], ¢t > 0, that satisfies the parabolic equation

ou N 1 0 gau
(1 - d2) (1)

E— = -
When formulating the problem the boundary conditions are one of the
most important factor. Let us when z =1

U’(la t) = M(t)vu(la 0) = M(O) =b, (2)

b - determined value and p - unknown function, which satisfies the
following ordinary differential equation

dp  Ou(,)

dt @ ox

|w:1 , a>0. (3)
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When z = 0 let
U(O,t) =7 N(t) + f(t)v v = const > 0 (4)

here f(t) - determined time function. Initial conditions are determined
by next statement

u(z,0) = Ulx), (5)

compatibility conditions are:
UQ1) =b,U(0) =~b+ £(0). (6)

Using the work [4] research methods we are getting the above stated
problem decision in the following theorem form.

Theorem. The initial boundary value problem (1)-(6) can be solved
and the solution can be described as follows

) = (14 T ) + (s )+

el (o)

t = win?t\ |
vs (2,2 ) = Z Cn €XP | = — sin(mnz),
n=1

where

and
t
1(t) = po(t)+eM (§a> _ it b+ﬁ/eﬂlsf(s)ds beM (§a> .
0

Note that functions M,w are uniformly bounded and the initial
conditions discrepancy is compensated with function v, (x, é) and is
quickly decreased to zero while ¢ increasing.

In conclusion, we should note one significant fact that values of
parameter v define the process a) v = 1 filling of target with gas; b)
v = 0 the process of cooling the gas inside the target.
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Game-theoretic models

Search numbers on graphs of block structure

T.V. Abramovskaya and E.E. Rzhevskaya
SPbSU, Saint Petersburg, Russia

We consider a problem of discrete graph searching. Invisible fugitive,
whose movements are unpredictable, moves on graph. There is a set of
searchers, whose goal is to find the fugitive. The conditions of capture
fugitive depend on type of search. In each case finding the minimum £,
such that k searchers can capture any fugitive in graph G, is the goal.
This minimum k is called the search number of graph G.

This problem can be formulated differently. The edge is clear if it
is guaranteed no fugitive on this edge, else the edge is contaminated.
Initially all graph’s edges are contaminated and the searchers’ goal is to
clear all graph’s edges. There are three possible search steps: to place
a searcher on a node, to remove a searcher from a node and to move
a searcher along an edge. A sequence of search steps that results in all
edges being clear, is a search strategy. A strategy is monotone if no
recontamination ever occurs. If the set of clear edges always induces a
connected subgraph, a search strategy is connected. Connected search
simulates a situation, when searchers want to have a safe transmission
channel.

Three types of search are considered: edge search, mized search and
connected mized search. Their search numbers are denoted by s(G),
mixs(G), cmizs(G). The first formulation of edge searching problem was
given by N.N. Petrov in [1] and T. Parsons in [2]. A searcher must
traverse the edge from one end—point to the other to clear the edge.
The conditions of clearing in mixed search consist of the condition in
edge search and a new opportunity, which is to place searchers on the
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both edge’s end—points. A clear edge e = (u1,us) is preserved from
recontamination if one of these statements is true for u;, i = 1, 2: either
searcher remains in u;, or all other edges incident to u; are clear. In other
words, a clear edge e is recontaminated if there exists a path between e
and contaminated edge with no searcher on any node of the path.

Graph searching problems are attractive for their correspondence
with classical width—parametres, serving as a model for important applied
problems, which were described in [3], [4]. Connection between graph
searching and pebbling was found in [5]. The relationships between search
numbers was showed in [6]. Let’s mention several of them:

o mizs(G) — 1 < pw(G) < mizs(G)
o mizs(G) < s(G) < mizs(G) +1
o mizs(G) < ecmizs(G)

It is known, that it is enough to consider monotone strategies if the
goal is to find s(G), mizs(G). In most cases, the class of graphs that
can be cleared by the edge search strategy using at most k& searchers is
minor closed. This fact is true for the mixed search, too. In case of the
connected mixed search, there is a counterexample given in [7] and it
is proven that the class of graphs that can be cleared by the connected
strategy using at most k searchers is not minor closed.

We introduce a special class of graphs to research connection between
the search numbers s(G), mizs(G), cmizs(G). We propose definition of
a block m x n. It is a graph that can be imagined such as a grid m x n,
where m is the number of rows and n is the number of columns. A
block have a boundary, which is the subgraph induced with the set of all
vertices of degree less than 4. The boundary is divided into four parts
(left, right, top and bottom) intuitively. For any block G (size m x n)
we show that s(G) = mizs(G) + 1 = cmizs(G) + 1 = min{m,n} + 1.
Then we introduce an operation with two blocks By and By and call it
by gluing. This operation means that all vertices of one boundary’s part
of a block B; are merged with vertices of one boundary’s part of a block
Bs. Gluing of B; and By is denoted by Bj Ll By. Also we can define a
boundary of B;LIBs such as a subgraph, which contains boundaries of B,
and Bj except merged vertices whose degree was 3 in By, Bs. The gluing
is intuitively generalized for any amount of blocks. Resulting graphs are
called graphs of block structure. Now we can introduce a new block search
on graphs of block structure. For block search only strategies, which have
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a following property, are considered: on every steps there exists no more
than one block, that have both clear and contaminated edges except
boundary’s edges. The conditions of clearing are equal to mixed search.
A block search number is denoted by bs(G).

We research gluing of two blocks By (mj xn1) and Bs (mg X ng). The
first class of resulting graphs contains all graphs B; LI By, when the pair
of vertices of degree two is merged. Let mo > my and all vertices of right
boundary of B; are merged with vertices of left boundary of Bs. For all
graphs in this class it is showed that bs(G) = mizs(G) = cmizs(G) =
min{max{mi,ns}, ma,ny +ne — 1}. The second class contains the other
graphs B; U By. Without loss of generality, we assume that all vertices
of bottom boundary of Bs are merged with vertices of top boundary of
Bj. Let ng < ny, thenny = k—1+ns+p—1, wherep—1, k-1
are amount of top boundary’s vertices of B, which are situated left
and right of merged vertices, and p > k. In this case we show that
bs(G) = mixs(G) = cmizs(G) = min{max{2m1, no}, max{my,ng + k —
1},711, my+mg—1,m; + TZQ}.

Further we consider operation deletion of the internal edges and
vertices of block By (m1 X n1) from block Bs (ma X n2), where mo >
my, ng > nq. For all resulting graph it is showed that mizs(G) =
emizs(G) = min{M + m,mga,na}, where m is the minimum number
of vertices in a row (left and right parts) or in a column (bottom and
top parts) from boundary of deleted block By to boundary of block B,
M is the maximum number of such vertices.
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Generalization of binomial coefficients to
numbers on the nodes of graphs*

A. Khmelnitskaya, G. van der Laan, and D. Talman
Saint-Petersburg State University, Russia,
VU University Amsterdam, The Netherlands,
Tilburg University, The Netherlands

The topic of this work does not relate directly to game theory,
but the interest for this study is strongly influenced by our study
of Shapley-type solution concepts for cooperative games with limited
cooperation introduced by means of communication graphs. If there are
no restrictions on cooperation, the classical Shapley value assigns to each
player as a payoff the average of the players’ marginal contributions with
respect to all possible orderings of the players. However, in case of limited
cooperation represented by a graph not all orderings of the players are
feasible, but only those that are consistent with the graph. When the
graph is a line-graph, the numbers of feasible orderings starting from
each of its nodes are given by the binomial coefficients.

The triangular array of binomial coefficients, or Pascal’s triangle, is
formed by starting with an apex of 1. Every row of Pascal’s triangle
can be seen as a line-graph, to each node of which the corresponding
binomial coefficient is assigned. We show that the binomial coefficient of
a node is equal to the number of ways the line-graph can be constructed
when starting with this node and adding subsequently neighboring nodes
one by one. Using this interpretation we generalize the sequences of
binomial coefficients on each row of Pascal’s triangle to so-called Pascal
graph numbers assigned to the nodes of an arbitrary (connected) graph.
We show that on the class of connected cycle-free graphs the Pascal
graph numbers have properties that are very similar to the properties of

*The research of Anna Khmelnitskaya was supported by RFBR (Russian
Foundation for Basic Research) grant Ne16-01-00713 and NWO (Dutch Organization
of Scientific Research) grant Ne040.11.516. Her research was done partially during her
stay at Vrije Universiteit Amsterdam and the University of Twente, the hospitality
of both universities is highly appreciated.
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binomial coefficients. We also show that for a given connected cycle-free
graph the Pascal graph numbers, when normalized to sum up to one, are
equal to the steady state probabilities of some Markov process on the
nodes. Properties of the Pascal graph numbers for arbitrary connected
graphs are also discussed. Because the Pascal graph number of a node
in a connected graph is defined as the number of ways the graph can
be constructed by a sequence of increasing connected subgraphs starting
from this node, the Pascal graph numbers can be seen as a measure of
centrality in the graph.

Controlled dynamics
in multicriteria optimization*

E.V. Khoroshilova
Lomonosov Moscow State University, CMC Faculty, Moscow, Russia

A mathematical model of terminal control with two basic
components: a controlled dynamics and a boundary value problem in
the form of multicriteria equilibrium model, is considered. The boundary
value problem describes a controlled object situated in a equilibrium
state. Under the influence of external disturbances the object loses its
state of stability and must be returned to equilibrium. The saddle point
approach was used to do this, and the extraproximal method was applied
to find a solution. The convergence of the method to solution was proved.

Boundary value problem. A group of m participating countries
creates a community for the realization of some economic project. It
is assumed that by the time of the community creation, the member
countries have already identified their interests and objectives in the
project, set types and amount of resources required to participate in
integration. Interests of each of the participants are described by cost
objective functions f;(z1), i = 1,m, which are defined on a common
set of resources X7 C R"™. Each of participants wants to minimize the
cost of its contribution to the overall project. In the first approximation,
this situation can be described as a simple multicriteria optimization
problem:

f(z7) € ParetoMin{ f(x1) | #1 € X1}, (1)

where f(z1) = (f1(z1), fo(x1), ..., fm(21)) is a vector criterion; convex
scalar function f;(z1) is value of resources that must be entered in the

*This research is supported by the Russian Foundation for Basic Research (Project
No.15-01-06045-a).
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community by i-th participant to implement the project. The problem
(1) generates a set of solutions in the form of vast variety of Pareto-
optimal points.

Along with the individual interests of participants there exist also
group interests, for example, the cost of the whole project. For different
Pareto-optimal estimates this cost is different. It is natural to choose
the project with a minimum value. Thus, it is necessary to formulate a
mathematical model that takes into account both the individual interests
of each participant and group (collective) interests of the community.
As a result, the following two-person game with Nash equilibrium was
proposed [1]:

(A", f(27)) € Min{(\", f(21)) | 21 € X1}, (2)
A= A, f(z5) =AY <0, A>0. (3)

Formulation of terminal control problem. We add a controlled
dynamics to the problem (2),(3) and formulate the following common
dynamic model with multicriteria optimization boundary value problem:

Lalt) = D@a(t) + BOu), to <t <t alto) =w, ()
x(t1) =27 € X1 CR", u(:) € U, (5)
U= (u() € Lilto, 1] | JulE < O, ©)

where z7 is xi-component of solution for multicriteria equilibrium
problem (2),(3). Here D(¢), B(t) are continuous matrices, xo is initial
condition, z(t) € ACZ3[to,t1] (linear variety of absolutely continuous
functions). The dynamic model (2)-(6) describes the transition of
controlled object from the initial state o to a terminal state x(t1) = =7,
which is given implicitly as the solution of (2),(3). We look for a control
u*(t) € U such that the trajectory x*(¢) has got by its right end to the
appropriate component z*(¢;) of boundary value problem’s solution.
Saddle point approach to the problem. We associate the

problem (2)-(6) with the saddle-point-type function, which will play a
role similar to the Lagrange function in convex programming:

L) 21, (1), u(t) =

d

= O S@) =30+ [ 0. D00) + Bl - Zalo)a (7
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defined for all (A, +()) € R} x Wgto,t1], (x1,2(t),u(t)) € X1 x
AC"[to,t1] xU. In the case of regular constraints, the function (7) always
has a saddle point (A}, ¥*(-); 27,2 (), u*(+)), which is the solution of the
problem. Therefore, the problem (2)-(6) is reduced to finding the saddle
points of (7).

Method to solve the problem. The dual extraproximal method

that guarantees the convergence to the solution of saddle point problem
(2)-(6), has been applied [1]:

2= argmin{%M —AF12 — ), fah) - %A) | A > 0} : (8)

0 =0 +a (D00 + BOHO - §240) . ©)

1
(xllc+17xk+1(,)’uk+1(.)) = argmin{§|$1 - x’f|2 +

- 1oy 1 1
+a(A, f (1) — §Ak> + 5 lla(t) — 2" ()% + 5 lu(®) = uF (@) +

+ a/'l (WF (), D(®)a(t) + B(tyu(t) — %x(t)}dt} , (10)

to

1 1
Mt — argmin {§|/\ — X2, fabt) — RARE 0} . (11)

PEFL(E) = R () + a (D(t)xk+1(t) + B(t)u*t1(t) — ix’““(t)) ,a>0,

dt
(12)
where a minimum in (13) is computed in all (z1,z(-),u(-)) € X1 x
AC™[tg,t1] x U. A similar approach was considered in |2].

Theorem (on convergence of the method). If the solution of
equilibrium problem (2)-(6) exists, functions fi(z1), i = 1,m, are
conver and subject to Lipschitz condition with constant L, then the
sequence generated by the dual extraproximal method (8)-(12) with the
parameter «, satisfying the condition 0 < a < oy, where o is a defined
constant, contains a subsequence that converges to one of the solutions
(A5 0* ()27, 2*(-),u™(+)) of the problem. In this case, the convergence
in controls is weak, the convergences in phase and conjugate trajectories
(as well as in terminal variables) are strong.
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On a construction
generating potential games”®

N.S. Kukushkin
Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

Strategic games are considered where each player’s total utility is
the sum of local utilities obtained from the use of certain “facilities.”
All players using a facility obtain the same utility therefrom, which
may depend on the identities of users and on their behavior. If a
regularity condition is satisfied by every facility, then the game admits
an exact potential [1]; both congestion games [2] and games with
structured utilities [3], as well as games of social interactions considered
in [4], are included in the class and satisfy that condition. Under
additional assumptions the potential attains its maximum, which is a
Nash equilibrium of the game.

A strategic game T is defined by a finite set N of players, and, for
each i € N, a set X; of strategies and a real-valued wtility function u;
on the set Xy := [];cn X; of strategy profiles. We denote N := 2V \ {0}
and X; := [],c; X; for each I € N.

A function P : Xy — R is an ezact potential of T' if

ui(yn) —ui(zn) = P(yn) — P(zn)

whenever i € N, yy, oy € Xy, and y_; = z_;. If 2, € X maximizes
P over Xy, then, obviously, z%; is a Nash equilibrium.

A game with additive common local utilities (an ACLU game) may
have an arbitrary finite set N of players and arbitrary sets of strategies X;

*This research is supported by the Russian Foundation for Basic Research
(project 14-07-00075).
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(i € N), whereas the utilities are defined by the following construction.
First of all, there is a set A of facilities; we denote B the set of all
(nonempty) finite subsets of A. For each i € N, there is a mapping
B;: X; — B describing what combination of facilities player i uses when
choosing x;. Every strategy profile zy determines local utilities at all
facilities o € A; each player’s total utility is the sum of local utilities
over chosen facilities. The exact definitions need plenty of notations.

For every o € A, we denote I := {i € N | Va; € X; [a € B;(z;)]}
and It = {i € N | 3o; € X;[a € Bj(z;)]}; without restricting
generality, we may assume I # (). For each i € IF, we denote X :=
{zi € X; | @ € Bj(z;)}. Then we set Z, :={I e N | I; C I C I}}
and 24 = {(I,zr) | I € I, & 7 € X{}. The local utility function
at @ € Ais pq: 24 — R. For every a € A and zy € Xy, we denote
I{a,zn) :={i € N | a € B;(z;)} € Z,. The total utility function of each
player ¢ is

ul(xN) = Z Qpa(I(aaxN);xl(a,mN))'
a€B;(z;)

We call a facility @ € A regular if there is a real-valued function
1o () defined for integer m between max{1,#I;} and #IT — 1 such
that oo (I, 27) = o (#I) whenever I € Z,,, [ # I}, and x; € X¢.

In other words: whenever a regular facility o is not used by all
potential users, neither the list of users, nor their strategies matter, only
the number of users.

We call an ACLU game regular if so is every facility. Both congestion
games and games with structured utilities are regular ACLU games.

Theorem 1. Every regular ACLU game admits an exact potential.

Let a finite set N of players be fixed. An autonomous facility o
is defined by two subsets I, C IF € N [I; may be empty|, a set
X of relevant strategies for each ¢ € I, and a local utility function
Yo: 2% 2> R, where Z, :={I e N | I; C I CI}}and E*:= {(I,z9) |
IeZ, & z¢ € X¢}, exactly as above. We call an autonomous facility o
reqular if it satisfies the same condition.

Let « be an autonomous facility, and let I' be an ACLU game with
the same set N, a finite set A such that o ¢ A, and X; N X = () for each
i € N. An extension of I' with « is a strategic game I'* satisfying these
conditions: N* = N; A* = AU{a};foreachi e N, X = X, UXpifi €
It and X} := X; otherwise, B} (x;) = B;(z;) for each z; € X;, and, for
each & € X2, thereis o;(z$) € X, such that B (z¢) = {a}UB;(0;(z));
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whenever I € Z, and z¢ € X¢, there holds ¢%(I,z¢) = ¢a(I,x¢);
whenever 8 € A, I € Ty, zy € X;?, and J := {i € I | z; € X2}, there
holds (1, zr) = w1, (x1\7,0(21))).

Theorem 2. An autonomous facility « is regular if and only if every
extension I'* of a regular ACLU game I' with o admits an exact potential.
The range of I'’s can be restricted to congestion games or games with
structured utilities.

To ensure that the potential P attains a maximum, some additional
assumptions are needed. The simplest approach would be to have P
upper semicontinuous and X compact. A certain degree of subtlety is
required, however, as was shown even in a particular case [4].

Assumption 1. The set of facilities A and each strategy set X; are
metric spaces; each mapping B; is continuous in the Hausdorff metric on
the target; for every @ € A and I € Z,, the function ¢4 (1,-): X; — R
is upper semicontinuous.

For each i € N and m € N, we denote X" := {z; € X, | #B;(z;) =

Assumption 2. For each i € N and m € N, either X" = () or X"
is a compact subset of X;.

Assumption 3. For each i € N, X" # () only for a finite number
of m € N.

For every a € A, we denote I3 := {i € I | 3O [(Ois open ) & o €
O&VBeOie I; = [ = a]]}; roughly speaking, 1> is the set of
players in whose strategy sets « is topologically isolated.

Our final assumption combines some sorts of upper semicontinuity
(of ¢4 in @) and monotonicity (of ¢, “in I7).

Assumption 4. For every a € A, I € 7, and € > 0, there is § > 0
such that o (I,z1) > ¢(J,ys) — ¢ whenever 8 € A\ {a}, J € I3,
xr € X7, ys € Xﬁ, J C I\ I, and the distances between « and §in A
as well as between z; and y; in X ; are less than J.

If A is finite as, e.g., in a game with structured utilities or in a
congestion game, then Assumption 4 holds vacuously since I2 = I,
and hence no J € A could satisfy the conditions.

Theorem 3. Every ACLU game satisfying Assumptions 1-4
possesses a (pure strategy) Nash equilibrium.

Dropping any one of the assumptions makes the theorem wrong.
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Epistemic approach to Bayesian routing
problem

T. Matsuhisa*
Ibaraki Christian University, Hitachi-shi, Ibaraki 319-1295, Japan,
IAMR, KarRC, RAS, Petrozavodsk, 185910, Russia

We highlight on the role of sharing knowledge on the users’ individual
conjectures on the others’ selections of channels in a Bayesian routing
problem. Let us consider a Bayesian extension of KP-model, introduced
as a network game by Koutsoupias and Papadimitriou [5], and let us
start to treat the simple KP-model consisting of one storage S and n
users with which each has to use one of m channels to connect the
storage. Each channel [ = 1,2,--- ,m has a given capacity ¢;. User @
intends to send/receive information with volume w; to/from the storage
S through channel ;. The Bayesian KP-model is given as an extension
of the KP-model equipped with a partition information structure.

In the seminar talk, I considered the Bayesian KP-model with
partition information structure as follows. The users possess with
the same prior distribution on a state-space. In addition they have
private information given by a partition information structure i.e., a
reflexive, transitive and symmetric binary relation on a state-space.
Each user predicts the other players’ actions as the posterior of the
others’ choices of channels given his/her information. I have proposed
the two extended notions of equilibria, expected delay equilibrium and
rational expectations equilibrium, in which the former is given as the
profiles of individual conjectures such as each user maximizes his/her

*Current contact address: MRI BUSAIKU-BUHI Foundation for Scientific
Research Tokiwa-cho 1-4-13, Mito-shi Ibaraki 310-0033, Japan.
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own expectations of delay and the latter is defined by the profiles of
conjectures such as each user minimizes his/her own expectations of
social cost respectively. Under the circumstance, In highlighting the
epistemic feature I aim to give necessity condition for these equilibria
as below:

Common-Knowledge Case

Theorem 1[5]. If all users commonly know an expected delay
equilibrium, then the equilibrium yields a Nash equilibrium in the based
KP-model. If they commonly know a rational expectations equilibrium,
then the equilibrium yields a Nash equilibrium for social cost in it.

Common-knowledge plays essential role in the above theorem if there
are more than two users. In fact, for two users case the theorem is still
true without common-knowledge assumption, however for 3 users case it
cannot hold without the assumption. As well known, it is actually a very
strong assumption, So we would like to remove out it in our framework.

Communication Case

To the purpose we adopt the communication process introduced by
Parikh and Krasucki [6] replacing common-knowledge. Let us now
start that all users form a communication network. Each user sends
privately his/her conjecture about the others’ choices of channels to
the another user according to the communication network as messages,
where the message consists of information about his/her individual
conjecture about the others’ choices. The recipient of the message has to
updates her/his private information structure by the message received.
She/her has to revise her/his conjecture on the others’ choices, and
send the information about her/his revised conjecture to the another
user according to the communication network. The users continue to
communicate their private information of conjecture on the other’ choices
as so on. In this circumstance, we can show that

Theorem 2. In the revision process of rational expectations equilibriums
according to the communication process, the limiting conjectures yields
a Nash equilibrium for social cost. For the expected delay equilibrium the
same holds true also.



Game-theoretic models 157

Apprisals

Upper bounds for price of anarchy. By extending the notion of the
price of anarchy to rational expectations equilibriums the upper bound
of the price of anarchy for some typical social cost functions may be
given as follows:

Congecture. In the communication, consider the limiting expected delay
equilibriums. Then the extended expected social costs for the linear
social function according to the the limiting expected delay equilibrium
is bounded by the ratio of the mazximal capacity of the channels by the
minimal one; i.e., it is lesser than or equal to Max}_;c;/Min}_;¢;.
Literatures Garing et al [2] is the first paper in which Bayesian Nash
equilibrium is treated. They analysis Bayesian extension of routing
game specified by the type-space model of Harsanyi [3] as information
structure, and they collected several results: (1) the existence and
computability of pure Nash equilibrium, (2) the property of the set of
fully mixes Bayesian Nash equilibria and (3) the upper bound of the price
of anarchy for specific types of social function associated with Bayesian
Nash equilibria.

In my work I modify their model by adopting arbitrary partition
information structure following Aumann [1] instead of the type-space
model. The merit of adopting information partition structure lies not
only in getting the close connection to computational logic but also in
increasing the range of its applications in various fields.

It ends well by remarking on the assumption in the model. I have
treated the volumes in the Bayesian KP-model as indivisible goods,
but we should treat it as divisible ones when KP-model is considered
as a model of cloud computing system, because the volumes will be
given as the volumes of information, which is considered as divisible.
Furthermore, it will have to arise several interesting problems to
investigate in future agendas. Among others the most important is to
study the several core notions appeared in our framework of Bayesian
game.
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Minimax estimation of the parameter of the
negative binomial distribution*

V.V. Morozov and M.A. Syrova
Lomonosov Moscow State University, Moscow, Russia

Let’s consider the minimax estimation problem of the parameter 0
of the negative binomial distribution (NBD) f(¢|6,7) = 6" (1—0)*(r)./t!,
t=20,1,.., where (r)y =r(r+1)---(r+t—1), t > 1,(r)o = 1. The
parameter r > 0 is assumed to be known. We use the quadratic loss
function L(6,d) = (6 — d)?. For the geometric distribution (r = 1) a
statistical game was solved by G.N. Dyubin in [1]. Here a similar solution
is obtained for r € (0,1). If » > 1, a numerical method is specified for
finding a minimax estimator. When r > 2, the estimate, which minimizes
the maximum risk among linear estimates of the form ¢y + c2, where
do is an unbiased estimator, is constructed.

Problem. A statistician observes a value t of the random variable T’
having NBD f(¢]0,r). A decision function ¢ : Z4 — [0,1] is a strategy
of the statistician belonging to the set A of all such strategies. After
the substitution of the strategy ¢ in the loss function L and subsequent
averaging over f(t|0,r), one obtains the risk function

R(0,6) = E[L(6, |0_HZT)1_ L6 — 6(t))2.
t=0

*The reported study was funded by RFBR according to the research project
Ne 16-01-00353 a.



Game-theoretic models 159

In the statistical game G = ([0,1], A, R(0,)) the first player (nature)
maximizes the risk function R, and the second player (statistician) mini-
mizes it. It’s assumed that the nature may use mixed strategies & € =.

Solution of the game for r € (0,1). Let 6 € (0,1) be a root of
the equation 6(20" /2 +r +2) = r and \g = (r — (r +2)00) /(205 + 7 —
(r+2)6y). We denote by Iy the indicator of point 6.

Proposition 1. If r € (0,1), then & = Xolg, + (1 — Xo)I1 and
0%(0) = (1 +2/r)0y, 0*(t) =00, t =1,2,... are the optimal strategies of
the players, and v = (1 — 6*(0))? is the value of the game G.

Minimax linear estimator. A strategy of interest is the linear
estimate ', which minimizes the maximum risk on Al = {c;6 +
c2lc1,c2 € 0,1]} (see [2]). For any 6 = c180 + ca € Al risk function can
be written as F(6, 1, c2) < R(8,8) = (0(1— 1) — c2)? + (07 h(0) — 62),
where

(1-6)/6
_00(7”—1)152 e or—1 272
O =2 S, -0 = gy / T2

t=0 0

is a generalized hypergeometric function. To find the strategy &' =
i o + ¢, we solve the game G' = ([0,1],[0,1]2, F(0,c1,c2)). Consider
the following system of equations for the variables 6, c1, cs :

FC1(0a01762) =0, Fe(gvclaCQ) =0, F(gvclch) = F(Ovclch)' (1)

Lemma. Forr > 2 the system of equations (1) has a unique solution.

Proposition 2. Forr > 2 let (6', ¢}, cb) be the solution of (1). Denote
No=ch /(01 (1 — ). Then € = Nlg + (1 — X1y and §' = ¢ 6o+ ¢k are
optimal strategies for players and v' = (c})? is the value of the game G'.

An approximate solution of the game. Let’s consider r >
1. For integer N > 1 we define a truncated strategy oy =
(6(0),0(1), ..., 6(N)) € [0,1]¥*! and the corresponding payoff function
-
RN(Ha(SN) = HTZ

t=0

"1 gyo - 5()?

of the game Gy = ([0,1],[0, 1]+ Ry (0,0n)). The function Ry is
convex in §n. Therefore in the game Gy the nature may use mixed
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strategies of the form £ = 1" | a;1y,, where
ai=1,0;20i=1,..,m 0<6 <0 <..<0, <1, m<N+2.

The set of all such strategies is denoted by =™ . For each strategy £ €
E™ the corresponding Bayesian strategy 6%, = (E [Olt],t = 0,1,...,N)
minimizes Ry (&,8y) for Sy € [0, 1]V where the expectations E [O|t]
are taken over the posterior distribution

&t = Zm@f(l — Gi)tfgi/z aﬂ;(l - ej)t'
i=1 Jj=1

To solve approximately the game G, we fix the accuracy €; > 0 and
choose a value of m < N + 2. We have

vy = max R(§,0%) = RE,05) < ow <oy = max R(,0%).

If inequality o4 — vy < €7 is not satisfied, we increase m and repeat
the calculations to achieve the accuracy ;. Note that for a  given

€1 a minimal required m grows with r. The following table shows the
minimal m, which ensures the accuracy e; = 1078 :

r 213|456 | 718]9 |10
m | 10|12 | 14 | 21 |25 |26 | 28 | 30 | 32 |

Using the found strategy 516\; let’s define a strategy 6* in the original
game G :

=
5 () = 5?;(75), 0<t<N,
oy (N), t>N.

The strategy 6* realizes min max R(#,*) with e > 0. To get €, we find
SEA 0<O<1

an upper bound for a «tails of series R(6,*) :

N
(r)t r t * 2 2 (r)t T ) def
-~ 77 —_ —_ < —_ -~ 77 — g = .
> T (1-0)'(0-0" (1)) < max 0 (1 > e 9)) ea(N)
t>N t=0

Now we can take ¢ = €1 + 2(N). It should be noted that e2(N)
decreases slowly with growth of N. For example, if r = 4 £2(200) =~
0.00017, and £2(1000) = 0.000007. At large N the solution of the game
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Gy requires a significant amount of computations. It is possible to reduce
eo(N) with the following method. The statistician suggests that 6 €
[0,1], where § > 0 is a lower bound of the parameter 6. Then in games
G and G one needs to change the interval [0, 1] to [, 1], and calculate
g2(N) as maximum on [, 1]. For example, if r = 4 and § = 0.1 the
improved value of £2(200) equals 1078, So, the value of the game v is
0.01943937 with & = 1 + £2(200) = 2 - 1078.

References

1. Dyubin G.N. The statistical game of the estimation of geometric
distribution parameter// Game-theoretical questions. Leningrad:
Nauka, 1978. P. 124-125.

2. Ferguson T.S, Kuo L. Minimax estimation of a variance// Annals
of the Institute of Statistical Mathematics. 1994. V. 46, Ne2. P.
295-308.

Games with polynomials*

N.N. Petrov and V.V. Petrova
Udmurt State University, Izhevsk, Russia,
Izhevsk Technical University, Izhevsk, Russia

The following class of antagonistic games is considered [1]: the poly-
nomial is given

fof@)=a2™+az™ ' 4+ Fam 17+ am. (1)

Two players change alternately one coefficients a; by any real number,
but each coefficient is used only one time.

Payoff function of the first player (player who makes the first move)
is determined by one of two following ways:

a) Hi(s1,s2) is the amount of different real roots of the polynomial
[

b) HQ(Sl, 82) = —Hl(Sl,Sg)

(s1 — is the strategy of the first player, so — is the strategy of the
second player).

It means that in the case a) the first player strives to that the
polynomial f had most of all different real roots and in the case b)
the first player strives to that the polynomial f had least of all different
real roots. The aim for second player is opposite.

*This research is supported by RFFI (Ne16-01-00346).
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Let v;(m, an,) is value of the game with payoff function H; of first
player and with m-th degree polynomial (1), where a,, is constant term.
Theorem. That is true
v1(2n+ 1, a9,41) =v1(2n+1,-1) =1 for all n > 1;
v1(2n, az,) = 2 for all n > 1;
.v1(2n,—1)=4for all n > 3, v1(4,-1) =
va(2n, az,) =4 for all n > 4, va(4,a4) =
.v2(2n,—1) =2 for all n > 2;
.3 <w(2n+1,-1) <5foralln > 2, v5(3,—-1) =3.

2;
2;

O O W N
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Multistage bidding model with elements of
bargaining: extension for a countable state
space”

A1 Pyanykh
Moscow State University, Moscow, Russia

We consider a simplified model of a financial market with two players
bidding for one unit of a risky asset for n < oo consecutive stages. Player
1 (an insider) is informed about the liquidation price s° of the asset while
Player 2 knows only its probability distribution p. At each stage players
place integral bids. The higher bid wins, and an asset is transacted to
the winning player. Each player aims to maximize the value of her final
portfolio.

A model where the price s has only two possible values {0,m} is
considered in [1]. It is reduced to a zero-sum game G,,(p) with incomplete
information on one side as in [2]. In this model uninformed Player 2 uses
the history of Player 1’s moves to update posterior probabilities over
the liquidation price. Thus, Player 1 should find a strategy controlling
posterior probabilities in such a way that allows her to use the private
information without revealing too much of it to Player 2. In [3] the model
is extended so that the liquidation price can take any value s € S = Z,
according to a probability distribution p = (ps, s € S). It is shown that
when Dp is finite, a game G, (p) is properly defined. For this game the
value and optimal players strategies are found.

*The reported study was funded by RFBR according to the research project Ne16-
01-00353a.
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In both [1] and [3] the transaction price equals to the highest bid.
Instead we can consider a transaction rule proposed in [4], and define a
transaction price equal to a convex combination of proposed bids with a
coefficient 3 € [0, 1]. A model with such transaction rule and two possible
values of the liquidation price is studied in [5]. Here those results are
further extended for the case of a countable state space.

The model is defined as follows. At stage 0 a chance move chooses
a state of nature s € S according to the distribution p. At each stage
t = 1,n players make bids i; € I,j; € J where [ = J = Z,. A stage
payoff in state s equals to

(1= B)iz + Bjt — s, it < Jis
a®(it, jt) = 1 0, It = Ji,
s—Biy — (1= B)js, ¢ > Js-

Player 1’s strategy is a sequence of actions ¢ = (o1,...,0,) where
or: SxI'™1 — A(I) is a mapping to the set of probability distributions
A(I) over I. So, at each stage of the game Player 1 randomizes his
bids depending on the history before stage ¢ and the state s. Player
2’s strategy is defined as a sequence of actions 7 = (71,...,7,) where
7 J71 — A(J). The payoff in this zero-sum game Gy, (p) is defined as

Kn(pv g, T) = IE(;D,U,‘r) Z as(itvjt)'
t=1

Let’s denote distribution sets ©(x) = {p’ € A(S) : Ep’ = z} and
Az,y) ={p € A(S) : x < Ep’ < y}. Similar to [3], it can be shown that
for p € A(k — 1+ B,k + B) a pure strategy 7F defined as

Jt—1,  G—1 < Ji—1,

=k, (-1, di-1) =S Jee1s dem1 = e,

Jt—1,  li—1 > ji-1,
guarantees to Player 2 a payoff not greater than H..(p) in game G, (p).
Function H.(p) is piecewise linear with breakpoints at ©(k + ) and

domains of linearity A(k — 1 + 3,k + [3). For distribution p such that
Ep=k—-1+84+¢& £€][0,1), it equals to

Hoo(p) = (Dp+ (1 — B) —£(1 = §))/2.
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Since Dp is assumed finite, the value Ho(p) is finite as well. Hence an
infinitely long game G, (p) can be considered.

Let’s denote L (p) a guaranteed payoff to Player 1 in game G (p),
and p®(l,r) € ©(z) a probability distribution taking only values [ and r.
It can be shown that Player 1 can guarantee herself for p = Ap; +(1—\)p
a payoff of at least ALoo(p1) + (1 — A\)Loo(p2)- Since every distribution
p can be represented as a convex combination of some p*(l,r), proving
that Hoo(p) = Loo(p) requires an explicit proof only for p = p*+8(1, 7).

Let’s denote ¢ = (g;,4 € I) a marginal distribution of Player 1’s first
bid and p' = (pS“, s € S) a posterior distribution over the liquidation
price given a bid ¢ was made. Let’s also denote o a component of Player
1’s stage action, i.e. a probability of making a bid ¢ in state s. Then from
the Bayes rule o] = polig; /ps- Thus in order to define a stage action, it
is suffice to specify ¢ and (p?,i € I).

An optimal strategy for p*(0,m) as described in [5] can be adjusted
to p**8(1,7) in the following way. For p = p!(I,r) and p = p"(l, ) Player
1 uses bids [ and r respectively with probability 1 at the first stage
of the game. For p € {p*(l,r),p**#(l,r)} she uses a stage action with
parameters

(LT sk = By i = 1 — B,p" = pF (1), pF T = pR (L),
PPRUr) g = 1= Bqerr = Bop" = pF(I,r), pPT = pR ().

Applied recursively for respective posterior probabilities at subsequent
stages this strategy guarantees to Player 1 a payoff at least

Lo (0" (1,r)) = ((r =k =B)(k =1+ B) + B(1L - B)) /2.

This coincides with the value of Hu, (p*"7(l,7)). Thus the game G (p)
has a value Vi (p) = Hoo(p), and strategies described above are optimal.

It must be noted that Player 2’s strategy is surprisingly robust in
regard to changes in the payoff function. At the same time Player 1’s
strategy becomes more complex. For initial p € ©(k) posterior probabil-
ities in [3] form a symmetric random walk, i.e. posterior p’ will be either
in ©(k—1) or ©(k+ 1) with equal to 1/2 probabilities. This is no longer
true when S € (0,1). The strategy described above essentially differs
from that in [3], e.g. it doesn’t collapse to that of [3] when 5 — 1.
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Equilibria in dynamic multicriteria games”®

A.N. Rettieva
Institute of Applied Mathematical Research Karelian Research Center
of RAS, Petrozavodsk, Russia

Mathematical models involving more than one objective seem more
adherent to the real problems. Often players have more that one goal
and they can be not comparable. These situations are typical for game-
theoretic models in economy and ecology. Hence, multicriteria game
approach helps to make decisions in multi-objective problems.

Shapley [4] introduced the concept of multicriteria games that are
games with vector payoffs, and gave a generalization of classical Nash
equilibrium to Pareto equilibrium for such games. In recent years,
many authors have studied the game problem with vector payoffs.
Some concepts have been suggested to solve multicriteria games: in [5]
it was presented the notion of ideal Nash equilibrium, [1] connected
multicriteria game with potential game and [2] suggested E-equilibrium
concept.

Traditionally, equilibrium analysis in multicriteria problems bases
on the static or steady-state variant. For dynamic multicriteria games
proposed equilibrium concepts do not assist in evaluating players’
behavior. Presented work is dedicated to linking multicriteria games
with dynamic games. The new approach to construct the equilibrium
in dynamic game with many objectives is proposed.

We consider a bicriteria dynamic game with two participants in
discrete time. Players exploit the common resource and both wish to

*This research is supported by Russian Foundation for Basic Research, projects
no. 16-01-00183 a and 16-41-100062 p a.
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optimize two different criteria. The state dynamics is in the form

Ti41 = f(xt; u1t7u2t) , Lo =X, (1)

where x; > 0 is the resource size at step ¢, u;; € U; indicates the strategy
of player i, 1 = 1,2.

The payoff functions of the players over infinite time horizon are
defined by

oo
Ji= t;) 6t g1 (ure, uay)

oo
J? = t;) 6t g3 (ure, uay)

o0
J3 = t;) 6t g3 (ure, uay)

Jl = [ee]
J3 =3 0'g5 (ure, ua)
t=0

7J2:

(2)
where gf (u1t, uge) > 0 gives the instantaneous utility, 7,7 = 1,2, § €
(0,1) means the common discount factor.

In the present work we design the equilibrium in multicritetia
game using the Nash bargaining solution. Therefore, we begin with
construction of guaranteed payoffs which play the role of the status quo
points.

There are three possible concepts to determine the guaranteed payoffs
Gl, G2, Gl, G2

In the first one four guaranteed payoff points are obtained as the
solutions of zero-sum games. In particular, the first guaranteed payoff
point is a solution of zero-sum game where player 1 wishes to maximize
her first criterion and player 2 wants to minimize it. Other points are
obtained by analogy.

The second approach can be applied when the players’ objectives are
comparable. Consequently, the guaranteed payoff points for player 1 are
obtained as the solution of zero-sum game where she wants to maximize
the sum of her criteria and player 2 wishes to minimize it. And, by
analogy, for player 2.

In the third approach the guaranteed payoff points are constructed
as the Nash equilibrium with the first and the second criteria of both
players, respectively.

To construct multicriteria payoff functions we adopt the Nash
products. The role of the status quo points belongs to the guaranteed
payoffs of the players:

Hy(ure, uze) = (J1 (urg, unt) — G1)(J
Ho(uig, uat) = (Jg (ure, use) — G3)(J.

il V)

(ult, UQt) - G%) s (3)
(ult, UQt) - G%) . (4)

N
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Next definition presents the suggested solution concept.

Definition. Strategy profile (ui;, us;) is called multicriteria Nash equilib-
rium of the problem (1)-(2) if

Hy(uiy, uz,) > Hi(uie, usy) Yuie € Ut (5)
Hy(ui;,us,) > Ha(ujy, ugt) Yugr € Us. (6)

Just like in classical Nash equilibrium approach it is not profitable for
both players to deviate from equilibrium strategies. But under presented
equilibrium concept players maximize the product of the differences
between optimal and guaranteed payoffs (3)—(4).

A dynamic multicriteria model related with the bioresource
management problem (fish catching) is investigated to show how
suggested concept works.
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Analysis of political
processes and corruption

The phenomena of soft power and double

standards in mathematical model of
cross-cultural interaction

Yu.l. Brodsky
Federal Research Centre Computer Science and Control of the Russian
Academy of Sciences, Moscow, Russia

The article presents the results of mathematical modeling of cross-
cultural interaction by the competition equations. Study of the model
finds the possibility of a paradox situation, when one of the cultures
positively treats the other, though this other one is actually quite harmful
to it. Conversely, in some cases, quite a harmless culture can be treated
as very negative one.

Double standards are characterized by different application of the
principles, laws, rules, estimates to the same actions of various subjects,
depending on the degree of loyalty of these subjects to the estimator or
other reasons of benefit for him. As for the soft power - this term was for
the first time introduced in 1990 by Joseph Nye of Harvard University
[3], but something similar can be found also in works of Antonio Gramsci
and even in the ancient time - in Laozi’s Tao Te Ching. It is possible to
say, that the cultural values capable to induce others to want what is
wanted by you, are the cornerstone of the concept of soft power.

In the work [1] an interaction of two cultures was modelled by



Analysis of political processes and corruption 169

A. Lotka and V. Volterra competition equations.

dN N M dM M N

Here we treat a culture on its household level - as a certain method
of behavior, i.e. as a set of standard reactions to standard requests of the
environment. In our elementary model (1) we select from this set only
two factors: an attitude to compatriots and an attitude to strangers.

In the same work [1] it was shown that the behavior of this system
of equations first of all depends on coefficients of intolerance n and m.
It would also be possible to call these coefficients by double standards
factors — they show in how many times the competition in the culture
more or less than its competition with the foreign one.

We shall distinguish the following ranges of these double standard
coefficients:

e Supertolerance, if —oco < n,m < 0.

e Tolerance, if 0 < n,m < 1.

e Treatment without prejudices and preferences, when n and m
equals to one (no double standards).

e Intolerance, when 0 < n,m < oco.

It occures [1], that if the double standard coefficients are lesser than
one (tolerance), the cultures are friendly - they can exist together. If the
double standard coefficient of a culture is greater than one (intolerance)
- this culture constitutes a real danger to another - may force it out from
the system.

Besides, the capability of social systems to change the behavior on
short times in response to current situation, turns the dynamic system
(1) into a position differential game [2], where the double standard
coefficients n and m become the controls of players.

That is why double standards are so popular in the interstate
relations. Nevertheless, in the work [1] it is shown that if the rivals are
equally strong, uncontrolled increase in mutual intolerance (use of double
standards), becomes equally dangerous to both players. In this case there
are other interesting strategies of the game [2].

Now let us look at a situation, for example, from the position of

culture N representative. First, the value ]Z\y* is well-known to him,

because this value is a way of attitude to compatriots in the culture N
- a way of good behavior which is taught since the childhood. Secondly,

the value m is also known - it is a cometition pressure of the culture

M
M*
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M, which the representatives of the culture N directly observe, because
they are under this pressure. Most likely, these values are not identical

% # m% - because the cultures are really different.

Further, it is quite natural to assume that if N* > m ]\4*, then it

is pleasant to the representative of the culture NV - usually it is pleasant
to anybody, when the pressure upon him weakens. Perhaps, he assesses
this situation approximately so: "Ah, what darlings, these well-mannered

people of M - not that my rough compatriots!"On the contrary, if % <

m%, then representative of NV does not like this fact - very few people
like the pressure bigger than usual. Most likely he will think: "Well and
how savage are these M! It is quite impossible to live nearby them! They
are not able to behave at all!"

Actually, both as the first, either the second estimate can be deeply

wrong - in the system (1) nothing depends upon the ratio between the

N M . M N
values N and my e, as well as from the ratio between W and N -

The behavior of the system (1) depends only upon the double standard
factors n and m [1].

For example, if % >> mM*, but at the same time m > 1 -
the situation can be dangerous for the culture N, it can disappear
completely over a time, because of the neighborhood with “lovely and
well-mannered” people, especially if it puts n < 1, having been under

illusion of the first inequality.

On the contrary, if ﬂ* <m ]\/‘[* and even % << m%, but m < 1

- there is no danger for the culture N to disappear near the culture M.
Moreover, if n > 1 - the culture N forces out the rival trough a time.
However, if the system (1) becomes a differential game, the
double standard factors m and m are not observed directly. For the
representative of the culture IV to define m, is necessary to compare given

him in feelings m% with %, but the last value, as a rule is unknown

to him: studying of foreign cultures is a destiny of rather narrow circle
of specialists.

Thus,this elementary model learns us that it is incorrect to measure
one culture by the gauge of another — such a measurement is not valid.
The only true yardstick for the culture is this culture itself, i.e. the
competitive pressure of a foreign culture is to be compared with its own
internal competition, but by no means with the internal competition of
the native culture.
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At the author’s subjective view, this paradox illustrates why our
cutting through a “window to Europe” during the last 300 years is
not too successful. The Slavs once lived in Europe, but little from
them remained. At the same time, under the Horde Yoke we survived,
and under the Ottoman Empire the southern Slavs did, though very
unpleasant memoirs about these History periods remained in the folklore
of survivors.
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Markets and auctions:
analysis and design

Nash-2 equilibrium: how farsighted behavior
affects stable outcomes*

M.S. Sandomirskaia
National Research University Higher School of Economics, Moscow,
Russian Federation

In a bounded rationality framework, modeling iterated strategic
thinking process becomes more and more complicated as the number
of participants increases. Most papers have been devoted to analysis of
2-person games with non-trivial agents expectations on the opponent’s
reaction and various depths of such mutual predictions. The common
approach to n-person games with n > 2 is to introduce cognitive
hierarchy of players (see survey [1]). This requires certain knowledge of
the opponent’s calculation abilities. However in many real-life situations,
players might face an uncertainty how sophisticated their competitors
are. In particular, the opponents’ levels of rationality evolve in the course
of the game [2]. In this case an accurate prediction of response even at
one step ahead seems to be unreasonable.

The paper [5] introduces an equilibrium concept, so-called Nash-
2 equilibrium, in 2-player games with the following idea. A player
supposes that any profitable response of the opponent might follows
on her deviation and rejects such own improvement that may lead to

*The study was prepared within the framework of a subsidy granted to the HSE
by the Government of the Russian Federation for the implementation of the Global
Competitiveness Program.
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poorer situation after some opponent’s reaction. [5] provides a complete
characterization of Nash-2 equilibrium, resolves existence problem,
discusses the relation with equilibrium in threats and counter-threats,
equilibrium in secure strategies, sequentially stable set, equilibrium in
double best responses, and contains convincing examples why such
equilibria can sometimes explain tacit collusion and more effective
outcomes than Nash equilibrium.

In this work I extend the definition on Nash-2 equilibrium to n-
person non-cooperative games. The underlying intuition is based on
spatial economics notion of direct and indirect competitors [3]. In a game
with large number of players it is natural to assume that each player
divides her opponents into direct competitors whose reaction she worries
about and tries to predict, and indirect competitors whose strategy is
believed to be fixed as in Nash equilibrium concept. Such a selective
farsightness looks more plausible than total ignorance of reactions or
perfect prediction of future behavior of all other competitors.

Consider an n-person non-cooperative game in the normal form G =
(telI={1,...,n}; s €8Si; wu:5 x...x8, = R), where s;, S;
and u; are the strategy, the set of all available strategies and the payoff

function, respectively, of player i,7=1,...,n.
Let us define the reflection network g by the following rule. Nodes
are players ¢ in I. A directed link g;; = 1 from player i to j means

that player i accounts profitable responses of player j in her reasoning.
gij = 0, otherwise. Denote by N;(g) the set of neighbours j of player i
in the graph g, such that g;; = 1.

Definition 1. A deviation s, of player ¢ at profile s = (s;, s—;) is
secure if for any subset J C N;(g) and any profitable deviation s
of every player j € J at intermediate profile (s}, s_;) even in case of
simultaneous deviations of all players from J player i is not worse off,
Le. ui(s}, s, s—iy) > ui(s).

We maintain a non-cooperative framework and assume that if player
i has several out-neighbors they will not coordinate their actions. In this
paper the reflection network is fixed exogenously before the game starts,
it is not a result of strategic choice.

Note that if N;(g) = 0 then player ¢ does not worry about any possible
reactions, and so every her deviation is secure by definition. We will call
this situation fully myopic behavior.

Definition 2. A strategy profile is a Nash-2 equilibrium if no player
has a profitable and secure deviation.

Every Nash equilibrium is also a Nash-2 equilibrium irrespective
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of the architecture of the reflection network. Moreover, in the case of
empty reflection network they are coincide by definition. In general, non-
trivial reflection network significantly influences equilibrium outcomes.
A striking example is prisoner’s dilemma.

Consider the model of n-player prisoner’s dilemma from [4]. Each
player has two possible strategies: to cooperate with the community or
to defect. The utility function is

w — bA/n — ¢, if player i cooperates,
71 bA/n, if player i defects,

where A is a number of cooperators in the game, each of them brings
profit b to the society, but pays the cost c¢. The total profit is equally
divided to all n players irrespective of their real contribution. Unilateral
defection is preferred for each individual ¢ > %; overall cooperation is
more preferred for each player than common defection b > ¢ > 0.
Though under Nash rationality, cooperation is unlikely to emerge,
even in evolutionary game setting, considering a non-empty reflection
network yields cooperation. The number of cooperators depends both
on the architecture of network and the relation between b and c. Assume
that A players cooperate and any cooperator i reflects about n; other
cooperators. Such a situation is a Nash-2 equilibrium if and only if

cn cn
is>nt=1 4>
=T b

This means that a player reflecting about relatively small number
of agents never cooperates. Therefore, in Nash-2 equilibrium any subset
of players with sufficient number of "links"with the other cooperators
are able to maintain cooperation while all other defect if the number
of cooperators is enough to provide positive profits for cooperators.
When these profits are very small the cooperation requires the complete
reflection network among cooperators. Hence, for supporting cooperative
behavior it is important not only to provide a balance between the value
of individual return and the cooperation cost, but also to ensure close
contacts between cooperators.

Further examples will include analysis of oligopoly with different
structures of reflection networks. The connection with spatial models will
be highlighted. Common patterns of reflection networks will be identified.
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Optimization of energetic markets’ transport
infrastructure”

A. Vasin, M. Dolmatova, and P. Kartunova
Lomonosov Moscow State University, Moscow, Russia

Markets of natural gas, oil and electricity play an important role
in economies of many countries. Every such market includes its own
transmission system. Consumers and producers are located at different
nodes, and transmission capacities of the lines between the local markets
are limited. The share of transport costs in the final price of the resource
is typically substancial, the problem of transmission system optimization
is of practical interest. Paper [1] determines the optimal transmission
capacity for a two-node market. The present study considers a general
problem of social welfare optimization with account of production costs,
consumers’ utilities and costs of trasmission capasities’ increments. The
complexity of the problem concerns with substancial fixed costs related
to expansions of transmitting lines. If the set of expanded lines were
given the problem would be convex and could be solved by standard
methods. However, under a big number of lines the efficient search of
the set requires special tools. In general the problem of transport system
optimization is NP-hard ( see [2]). Below we determine conditions for

*The research was supported by Russian Foundation for Basic Research (project
No. 16-01-00353/16).
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submodularity and for supermodularity of the social welfare function on
the set of transmitting lines. These properties provide a possibility to
apply the known efficient optimization methods (see[3],[4]).

We consider a homogeneous good market consisting of several local
markets and a network transmission system. Let N denote the set of
nodes and L C N x N be the set of edges. Every node ¢ € IV corresponds
to a local perfectly competitive market. Demand function D; (p) and
supply function S; (p) characterize respectively consumers and producers
in the market and meet standard conditions. The demand function
relates to the consumption utility function: U; (¢) = foq D! (v) dv.
The supply function S; (p) determines the optimal production volume
at the node i : S;(p) = Arg max,(pv — ¢;(v)) , where ¢;(v) is the
minimal production cost of volume v at node 1. The total profit of
producers at node ¢ under price p is Pr;(p) = fo i(p)dp. For any
(i,7) € L, the line is characterlzed by 1n1t1a1 transmlssmn capacity Qw’
unit transmission cost et , Cost functlon of the transmission capacity
increment, including fixed costs e}/ and variable costs e}/ (Qij, Q%), €
is a monotonous convex function of increment (Q;; — ”) The cost of
the line expansion is the overnight construction cost amortized over the
life-time 7j; of the line using discount rate r: € = r 1_05’%” (see [5] for
the detailed discussion). Let ¢;; denote the flow from the market i to
market j, ¢i; = —qg;;. Denote Z (i) the set of nodes connected with node
i. Under any fixed flows of the good q = (gij, (4,7) € L) and production
volumes ¥ = (v;, i € N), the total social welfare for the network market

is

W)= [Ui|vi+ D qu| —ci)l— > Eyla)

iEN 1€Z(4) (i.j)€L, i<j
where
ef el (|Qz | = Q%) + e lais|, if |aij| > QY
Eij (q”) _ f v J t '] ’ ]O ij
et |gij | if [gi;] < Qij .

The welfare optimization problem under consideration is

max W(q. 7). (1)

Let AS; (p;) = S; (pi) — D; (p;) denote the supply-demand balance.
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Proposition 1 Under any fized flows (g5, (i,j) € L), for every i € N,
the optimal production volume at node i is v; = S;(p;), where p; meets
equation AS; (Pi) = X je 70 ij

For any L C L, consider a problem (2) with fixed set L of expanded lines.
That is, |g;;| < Q?j for (i,7) € L\ L, and the fixed costs are always

included in E;; for (i,j) € L.

Proposition 2 The latter problem is convez, and its solution
(7, 7)(L) meets FOCs which determine the competitive equilibrium of
the corresponding network market.

Let W(L) denote the maximal welfare in the latter problem. Then

problem (1) reduces to max; -, W(L). Below we also consider problem
(1) without construction costs and under constraint: |g;;| < Qij, (i,7) €

L. Let ﬁl(a),z € N, denote the equilibrium prices corresponding to the
solution of this problem.

Definition 1 The model under consideration meets the flow structure
invarience condition if, for any 5 > 50,(i,j) € L, sign(p;(Q) —
pi(@)) = sign(pi(Q°) — p;(Q°))-

A function w(L),L C L, is submodular (resp. supermodular) on L, if
for any L1,Le C L w(L1) + w(La) =2 (L) w(Ly + L2) + w(Ly N Lg).
The desirable properties of the welfare function closely relate to the
flow structure invariance condition. In general the function is neither
submodular nor supermodular even for chain-type graphs, where L =
{(i,i + 1),i = 1,..,n — 1}. Consider a market with 3 nodes where

P1 (C?) > p2(Q°) > ps (C?) Then the function is supermodular according
to Theorem 1 given below. If flow directions converge, then the function
is submodular by Theorem 2. In general a chain-type market may include
both structures as its components and meet none of the conditions of
super- or submodularity. Moreover, flow directions may change as the
capacities increase. Below we establish conditions for the flow structure
invariance and examine the welfare function for chain-type and star-type
markets.
Theorem 2 For a chain-type market with n nodes, let the initial prices
pi(ao), 1 =1,..,n, monotonously decrease in i. Then, for any @) > 60,
pi(Q) > pi+1(5
The co7(nple)$ity of search for the optimal set L" under G° =0 does not
n—1)n

5 -

), i=1,..,n—1, and function /V[v/(f) is supermodular.

exceed
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Consider a star-type market where N = {0,1,..,n},L = {(0,7),i =

17")”}7}%(60) < po(ao) for ¢ S Il :é2avm}7pz(6o) > po(ao) for
i€ly={m+1,.,n}.For M C L, let (Q°||Q%) denote vector 5 such
that Q; = QY for | ¢ M, Q, = oo for l € M.

Theorem 3 The market meets the condition of the flow structure

invarience if and only if Vi € I ]%(6%6??) < po(aoﬂaf) and
Vi € Iy ]%(50”5?;) > po(aoHa?j). Under this condition, the social

welfare function W(Ll U Ls) is submodular in L1y C I under a fized
set Ly C Is, and is also submodular in Loy C Io under a fized set
Ly C I;. Besides that, for any Li,l € I \ L1, the welfare function
increment W(l ULy, L) — W(Ll, L) monotonously increases in the set

Lo, and for any Lo, | € Is\ Lo, the increment W (L1,1U Ly) —W (L1, L2)
monotonously increases in the set Ly.

These properties of tree-type markets allow to use the known algorithms
[3] for submodular and supermodular functions maximization in order
to solve the optimization problem.
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Optimal regulation norms for competitive
markets”

A. Vasin, E. Sivova, and A. Tyuleneva
Lomonosov Moscow State Univercity, Moscow, Russia

This paper considers a competitive market of a homogeneous good
with production negative externalities. We provide a theoretical model
for determination of optimal regulation norms. Our study follows
the approach that determines regulation norms proceeding from the
social welfare maximization problem (see [1], [2], [3], [4]). We find out
conditions for existence of a uniform optimal norm for all producers and
provide an explicit formula for calculation of some sanitary norms.

Let A ={1,...,n} be a set of firms producing a homogeneous good.
Its production concerns with some negative external effect. Besides
production volume ¢® the negative impact depends on technological
parameter r* established by the producer. Below we call it the internal
standard. Thus, formally a strategy of producer « is a pair (¢%,r%). Below
we consider also an external norm related to the parameter. Production
costs of producer a correspond to the following expression:

C(q*,r") =¢"(q¢") + c1%(q", ") + c2"(¢", ), (1)
)

where ¢%(¢%) is the minimal cost of the volume ¢* production, ¢1%(¢%, r

- the additional cost related to the normative standard, ¢2%(¢%,r?%) -
the average cost of the negative effect’s compensation under the given
producer’s strategy.

Consumers behavior is characterized by continuous demand function
D(p) with standard properties: D(p) decreases and is differentiable
almost everywhere, it is equal to zero when the price exceeds some level.
The demand does not depend on standards set by producers because
consumers do not have reliable information about them and, moreover,
cannot estimate the impact of this factor on their utilities.

Let 7 denote an external norm established by some regulating
government body. The norm is typically set for all producers of the
good and does not depend on particular a € A. We assume that it limits
permitted internal standards from above and thus determines the set of
possible strategies for each producer: pair (¢%,r?) is feasible if r* < T.
Consider a model where the market is perfectly competitive and each
producer aims to maximize his profit under given norm and price:

*This research is supported by the Russian Fund for Basic Research, project N 16-
01-00353/16.
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(@ r*)(p,7) = » g§§a<F(pq“ = C%(q*, ). (2)

The supply function of producer a is determined as
5(p,7) = Argmax(pg® — min C*(¢*, 7). (3)
q® reLT

The total supply function is S(p,7) = >, S%p,7), and the

competitive equilibrium price p(7) proceeds from the condition D(p) €
S(p,T).
Proposition 1 Assume that, for each producer a, his cost function
may be represented as C%(q%, %) = & (q%) + ¢°C" (r*), where ¢(q) is
a convex and increasing function, ¢ (1) is a convex function that reaches
its minimal value at 7*. Then the equilibrium price p(T) does not increase
mT.

Thus, the tougher the norm the grater is the price. Below we discuss
the following issues: what is the optimal state of the economy with
account of the negative externality? How to reach this optimal state
by means of the regulation?

Consider the optimal strategy of producer a at the
equilibrium under a given norm: 7 ¢**(F) € S*p(7),7),
r®*(F) = arg minge<z C*(¢**(7), ). The social welfare with account of
the negative externality is determined as

w(r) =
D(p(7))
= [ D Mada = Y e ) 1) = X Clala (7). (1),
0 a a

f be®) p-1 (¢)dgq is the total consumers’ utility without the impact
of the negative externality, > C®*(¢**(T),7**(7)) shows the total costs
of producers, and C}, is the loss of the social welfare related to the
negative externality that is not compensated by the producer.

Consider a problem of the social welfare optimization for this
economy under a centralized planning. Let Cf, = C* + Cp,,. Then
the problem may be set as follows:

> q”
D™ (q)dg — > Ciy(q",r") & max . (4)

q%,r*,a€A
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Proposition 2 Assume that function Cty (%) =4 miny« C%, (g%, r%) is
convex. Then a combination of solutions (¢®*,r%*) for problem (2) under
constraint r* < 7%, a € A, is a solution of problem (4).

If the optimal values r® in the solution of the problem (4) are all
equal to 7, then we call # a uniform optimal norm.

Consider a particular case where the norm bounds concentration of
some harmful substance in the purchased good. For each producer A, let
¢*(¢*) denote the cost of production of the given volume without any
purification. The initial concentration of the substance is r§, and function
Ciarg(r) determines the marginal cost of purification depending on the
concentration. Then thea cost of purification under standard normative
reis c1%(q®,r%) = ¢q* [° Chnarg(T)dr, where function cf, ., decreases in
r. This property holds because reduction of the concentration in a given
amount is the cheaper the higher is the initial concentration.

Under a soft internal standard a producer faces the risk of additional
costs related to compensations of losses for consumers which suffered
from high concentration of the substance. Let w(r®) denote the money
equivalent of the average consumer loss per one unit of the good. This
function monotonously increases in r%, as well as the share 7%(r®) of
the loss that the producer compensates to consumers. Thus, the total
production costs meet C*(¢g%,r*) = ¢*(q%) + c1*(¢%, %) + 2%(q*,r")
where ¢2%(q%,r%*) = ¢°“m*(r*)w(r?®).

According to equation (2), the internal standard of producer a meets
condition

a

r = arg rrrlgn (/ czm,,g(r)dr + wﬂ(w)w(r“)) .
T

In the perfectly competitive market the optimal strategy under a
given norm 7 is a solution of the problem

@ ,r")(p,7) =

ro
— (I{lazc) pq® —<c*(¢*) — q“/cfnarg(r)dr — ¢*m(r*)w(r®)
q*,r%):
r¢<T ra

The total of production costs and consumers’ losses in this case is

a
To

C (q%,7%) = 2(¢") + ¢° / € ora (P + g (r), (5)

ra
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and the uncovered consumers’ losses related to the harmful substance
are Cp o, (q%, %) = ¢*(1 — w(r*))w(r®). Denote ), q* = ¢s. Then the
social welfare maximization problem is

a
To

/D Qdg -3 aa<qa>+q“/ g (P + q*w(r®) | = max

qe, re, aeA
rﬂ.

Proposition 3 Assume that the purification technology characterized by
the marginal cost function cparg(r) is the same for all producers. Then
the optimal sanitary norm r* binding the mazimal concentration of the
harmful substance meets equation Cparg(r*) = w'(r*), and the optimal
production volumes proceed from the system

D Y(gs) =¢" —|—f Cparg(r)dr +w(r*),a € A.
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Predictive models for
congested traffic

4-step forecasting transport model
with trip chaining behaviour®

A.S. Aliev, D.S. Mazurin, A.A. Fedotov, and V.I. Shvetsov
Institute for Systems Analysis, Federal Research Center «Computer
Science and Controls of Russian Academy of Sciences, Moscow, Russia

We consider the problem of modeling and forecast of traffic and
passenger flows in a large city. The standard approach to solving this
problem is a 4-step scheme [1, 2], which includes (1) trip generation, (2)
trip distribution, (3) modal split, and (4) traffic assignment. The main
advantage of this approach is the simplicity of data preparation and
software implementation and relatively low consumption of computer
resources, which allows for large scale network modeling. However, the
standard 4-step scheme does not account for some important aspects of
travel behaviour, one of which is the interrelationship between trips, that
form chains of trips. We presents a combined approach, which allows to
take into account a major impact of trip chains while maintaining the
computational simplicity of the 4-step scheme.

The movements of people form a chains that start and end at the
same place, usually at home. Various mobility surveys show that the
most common trip chains are chains with single destination Home —
Object — Home and chains of three trips Home — Object 1 — Object 2
— Home. One more fairly common chain Home — Object 1 — Object 2

*This research is supported by the Russian Foundation for Basic Research, Grant
Ne13-01-12030.
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— Object 1 — Home is splitting on two simple chains: Home — Object 1
— Home and Object 1 — Object 2 — Object 1. Other trip chains in the
demand structure can be neglected.

The set of trip chains with certain purposes in certain periods of
day (early morning, morning peak, midday off-peak, evening peak, late
evening, night) will be referred to as demand element (for instance, Home

Worl Zverng peak Home). We evaluate distribution of trip
chains over demand elements based on various mobility researches.

The calculation of trip matrices includes calculation of daily matrices
for each demand stratum, followed by calculation of hourly mode-specific
matrices (by foot, by car and by public transport) for each time period
[3]. We assume that people usually do not change mode during the chain
of trips. Thus will apply the same splitting coefficients to all trips in
a single chain. These coefficients are evaluated separately for demand
elements.

Modal split coefficients depend on the generalized travel costs for
different modes. Travel costs are composed of the following components:

Morning peak

e for private transport:

starting time (assigned to connectors from zones),
— travel time (road links and turns),

— operating costs (road links),

toll roads fee (road links),

— parking fee in certain areas (connectors to zone).
e for public transport:

— waiting and boarding time (boarding links),
— travel time (according to a time tables),

— the fare payment (a fixed payment or a distance-dependent
payment).

For evaluation of the modal split we divide the population into two
classes based on car ownership (access to a car). Thus car owners have
a choice of three modes, while the others have only two alternatives
(excluding car). The proportion of populations of these classes varies
over the territory of modelling.

We also use a similar modeling framework for freight transport, which
include the following steps (for each class of tracks):
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1.

Estimation of the total daily trips produced and attracted by a
zone for each demand stratum.

Calculation of daily matrices for each demand stratum.

Calculation of hourly matrices, taking into account the restrictions
of entry and moving of trucks of certain classes in certain areas of
the city, applied at certain time periods.

To implement this freight transport modeling framework the
following inputs are required:

freight demand structure description:
— freight trips generators and attractors classification (parking
stations, warehouses, factories, malls, shops, etc.),

— freight trip chains description (including intermediate trips
multiplicity),

— trip chains distribution by truck type (light, medium and
heavy trucks),

— trip distribution by time of day for each trip chain,

generators/attractors spatial distribution with their attributes.

The proposed modeling framework was implemented for the traffic
model of the Moscow agglomeration. Model calibration was based on
a hierarchical data structure [4], which implies step-by-step calibration,
starting with daily citywide indicators and then moving towards details
on the time of day, city zones, etc. A databank for calibration of the
Moscow traffic model includes:

traffic counts on roads;

passenger counts at subway and suburban railway stations;
passenger counts at bus stops near subway stations;

average travel times of typical routes at different time periods of a

day.
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The traffic low simulation in a growing
urban infrastructure with using a tool set for
creating interactive virtual environments

V.V. Gribova, N.B. Shamray, and L.A. Fedorischev
Institute of Automation and Control Processes FEB RAS, Vladivostok,
Russian Federation

Mathematical equilibrium models and the specialized software based
on them are one of the effective tools to support managerial decisions
in the transportation planing. Such models consider the traffic flow as a
entire unit and make it possible to predict the traffic volume and traffic
assignment in the network with flow-dependent travel costs.

Predictive modelling of traffic flows consists of solving the following
problems [1]: 1) trip generation; 2)trip distribution; 3) model split; 4)
route assignment. The problems are considered in succession, the output
from one problem is being the input to the next one. In order to achieve
an agreement between the results of problem solutions the process have
to be repeated many times.

The forecast congestion of the transportation network is determined
at the fourth step. The basic assumption concerning the way the network
users choose their routes is usually made according to the so-called
Wardrop’s first behavioural principle: drivers use only routes correspon-
ding to minimal travel costs [2].

Despite the many advantages the current software of traffic prediction
has two drawbacks 1) it does not contain implementations of recent
advances of the mathematical modelling of traffic flows; 2) it requires
preliminary training to be installed, supported and used.

In this paper the concept of the cloud service for interactive modelling
of transport flows in a growing city infrastructure will be described.
The main purpose of the service is operative evaluation of the network
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congestion as a result of various modifications of network elements and
changes in the arrangement and designation of town planning objects.

The forecast of traffic flows is realized on the bases of the mathe-
matical model which is the result of synthesis of the gravity model of
description of trip distributions [3] and multimodal network equilibrium
problem with elastic demand [4]. Equilibrium traffic flow pattern is
defined as the solution of the following variational inequality

1 0id; Prnij
Fe)a-a)-5 Y I EL

me M ( Z p:mlj)Q

(i,7) € O x D meM

(Pmij - p:mlj) >0,

(J?,p)EQ: (%P)ZO mep:pmmv mEM) (Z,])EOXD,

peEP;;
Z Z Pmij = Oi, Z Z pmij:djv (%J)GOXD ’
JED meM i€cO meM

where M, O and D are the sets of modes, origins and destinations, P;;
is the set of alternative routes for OD-pair (7,7) € O X D, & = (T :
meM, pe Py, (i,j) € OxD)and F(z) = (Fuplx) :meM, pe
P;;, (i,j) € OxD) are the route flow vector and the travel cost mapping,
p = (pmij : m € M, (i,5) € O x D) is the correspondence matrix, o;
and d; are the total number of trips generated by the origin ¢ € O and
absorbed by the destination j € D, A > 0 is the calibration coefficient.

The solution of the variational inequality substitutes the last three
stages of the four-phases iterative process of traffic modelling, which, in
turn, improves calibration of the calculations and leads to more reliable
results of traffic modelling. The assumption that the travel cost Fi,,(x)
is the function of the load across the entire network allows us to capture
supplementary flow relationships such as interactions among vehicles on
different road links and turning priorities in junctions and etc.

A tool set for 3D visualization and traffic lows modeling is imple-
mented. The tool set is a cloud service, which consists of three modules:
a simulation module, a control module, and a visualization module.

The simulation module is realized on a high-performance server plat-
form, control and visualization modules are realized on the TACPaaS
cloud platform [5]. Communication between the platforms based on asyn-
chronous dynamic http-queries.
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The simulation module results are transmitted to the control module,
whose main tasks are: processing, analysis and transmission of informa-
tion between the modules in specific for each module formats. Analysis of
the data in the control module is carried out using a virtual environment
model [6]. The virtual environment model has a declarative represen-
tation. Processing and analysis results are transmitted to the visualiza-
tion module in the same declarative format. The main component of the
visualization module is interpreter. It provides 3D visualization and a
program logic using the virtual environment model.
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Intermediate universal gradient method with
inexact oracle”
D. Kamzolov
Moscow Institute of Physics and Technology, Moscow, Russia
We consider the following convex composite optimization problem
[1]:

F(a:)zf(a:)—i—h(x)—)ITnElS

*This research is supported by grant REFBR 15-31-20571 mol-a-ved.
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Definition 1. [1] Let function f be convex on convex set ). We say
that it is equipped with a first-order (0, L)-oracle if for any y € Q we
can compute a pair (f5,z (y),9s, (y)), such that for all z € Q

0< (&)~ o () + (o ()2 — ) < &l —gl* 46

Constant ¢ will be called accuracy of the oracle. A function h(z) have

simple structure and it’s easy to compute it without an oracle.
Statement 1. [1] Composite fast gradient method(FGM)

Yu.E.Nesterov with (0, L)-oracle converges with

FyN)-F <e, N:O(@), 6<0(5)-

where (N — a number of calling oracle). Up to constant estimations are

optimal
Statement 2. [1]| We introduce oneparametric class with parameter
p € 10,1]) of intermediate gradient methods with such convergence rate

LR?\ 77 £
FN) - F <e, N:O((T) ) KO(W)' (1)
Statement 3. [1] Let
IVf(y) = V@), <Lully -zl (2)

with some v € [0,1]. Then

0< f(y) ~ @)~ (VF(@)y—2) < & Iy~ 2l +5,

L,1—v |1tV

rae L= Lu . Q_EH_V
Statement 4. From (1) For the intermediate gradient method we

derive such convergence rate [2]

2
Lu 14+v\ Tfepriv
F(yY)-F.<e, N=0O| inf R :
ve(0,1] 15

where § <O (55) ,p € [0,1].
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Proof For inexact oracle:

0< f(9) ~ 1(@) — (VS (y) = VI (@) < 2lly—al* +5

we have estimation

N:O((L?R?)p_il>,5<o(%).

Let use the notion of (4, L)-oracle for solving the problems with exact
first-order information but with a lower level of smoothness.

1—v

L,1-v]™

L=1L,|=x—"Y .
201+v

It means that our estimation changes such way:

LR?\ 7 R, [L,1-v] o\
= _— = _Ll/ _ =
N O(( € > ) © <5 [251—1—1/} )
2 .1 ﬁ
=0 <<R261L;+"61+v) ):

v—1
+1 2 1 Thv gL 2 —171e (€ \TF
Np ~ R g Ly 51+” ~ R e Lu m ~

_2 _2 _pv—p
~ R e LYY NT T =

pr—p _2 _2
NPHTTEES o L7 R%em0 =

2

prtptytltpr—p L, R\ T+
N T+v ~ —
9

14+v 2
N1+2PV+V ~ <LVR ) =
9

2

L R1+u T+2pr+v

N~<V7 N
g
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2
L R1+u T+2prtv €
Ny — —v- —
F(y¥)— F. <e,N O(( - ) >,5<0(Np).n
This method has a very good application in transport problems. We
could use it to solving dual optimization problem in searching equilibria
in mixed models of flow distribution in large transport networks.
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Empirical synchronized flow in oversaturated
city traffic

B.S. Kerner!, P. Hemmerle?, M. Koller?, G. Hermanns', S.L. Klenov?,
H. Rehborn?, and M. Schreckenberg!
L Physik von Transport und Verkehr, Universitit Duisburg-Essen, 47048
Duisburg, Germany,
2Daimler AG, RD/RTF, HPC: 059-X832, 71063 Sindelfingen,
Germany,
3 Moscow Institute of Physics and Technology, Department of Physics,
141700 Dolgoprudny, Moscow Region, Russia

Based on a study of anonymized GPS probe vehicle traces measured
by personal navigation devices (PND) in vehicles randomly distributed in
city traffic, empirical synchronized flow in oversaturated city traffic has
been revealed. It turns out that real oversaturated city traffic resulting
from speed breakdown in a city in most cases can be considered random
spatiotemporal alternations between regular sequences of moving queues
and synchronized flow patterns (SP) in which the moving queues do not
occur. This work relies on the results in [1].

Conclusions: In real oversaturated city traffic caused by speed
breakdown, the following empirical microscopic spatiotemporal traffic
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Fragment of typical empirical microscopic spatiotemporal structure of
oversaturated city traffic: (a) Vehicle trajectories of probe vehicles on
road section measured on February 05, 2013. (b) Microscopic
(single-vehicle) speeds (black squares) along vehicle trajectories shown
by the same numbers in (a). Dashed-dotted lines show traffic signal
location in (a) and time instances of vehicle passing the signal in (b).
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(a, b) classical two-phase traffic flow models
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Explanations of oversaturated traffic in classical theory (a, b) [3] and

three-phase theory (c—f) [4]: (b, ¢) Simulations of speed in moving

queues (b) and SPs (c). J — line J, gsat is a saturation flow rate, F —

free flow, S — synchronized flow.
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patterns have been revealed: (i) Empirical synchronized flow patterns
(SP). (ii) Classical regular sequences of moving queues. (iii) Random
spatiotemporal alternations between regular sequences of moving queues
and SPs. (iv) Simultaneous occurrence of SPs and moving queues in
different road lanes. Empirical probability of speed breakdown in city
traffic is well-described by a theoretical one found in [2].
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Phase transitions in deterministic traffic flow
models

A.A. Lykov, V.A. Malyshev, and M.V. Melikian
Lomonosov Moscow State University, Moscow, Russia

Theoretical modelling and computer simulation of transportation
systems is a very popular field, see very impressive review [2]. There are
two main directions in this research - macro and micro models. Macro
approach does not distinguish individual transportation units and uses
analogy with the fluid flow in hydrodynamics, see [1]. Stochastic micro
models are most popular and use almost all types of stochastic processes:
mean field, queueing type and local interaction models. We consider here
completely deterministic transportation flows. Although not as popular
as stochastic traffic, there is also a big activity in this field, see [3,4,5,6].
In these papers interesting results are obtained for sufficiently general
protocols.

Here we follow another strategy: for simplest possible protocols we try
to get results as concrete as possible. Namely, we consider the one-way
road traffic model organized as follows.

At any time ¢t > 0 there is finite or infinite number of point particles
(may be called also cars, units etc.) with coordinates zj(t) on the real
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axis, enumerated as follows
e < zp(t) < oo < 21(t) < 20(1) (1)

We assume that the rightmost car (the leader) moves “as it wants”, that
is the trajectory zo(t) is often assumed to have nonnegative velocity.

Our problem is to find the simplest possible local protocol (control
algorithm) which would guarantee both safety (no collisions), stable
(or even maximal) density of the flow or maximal current. Otherwise
speaking, we try to find control mechanism which guarantees that the
distance between any pair of neighbouring cars is close (on all time
interval (0,00)) to some (given a priori) fixed number, that defines the
density of the flow.

More exactly, denoting ry (¢t) = zx—1(t) — zx(¢), and

I'=jnf infri(t), 5= ig{figgm(t%
we try to get the bounds - lower positive bound on I and upper bound
on S - as close as possible.

Locality (of the control) means that the “driver” of the k-th car,
at any time ¢, knows only its own velocity vg(t) and the distance
ri(t) from the previous car. Thus, for any k& > 1 the trajectory z(¢),
being deterministic, is uniquely defined by the trajectory zx—1(t) of the
previous particle.

Using physical terminology one could say that if, for example, 7 (t)
becomes larger than d, then some virtual force F}, increases acceleration
of the particle k, and vice-versa. Thus the control mechanism is of
the physical nature, like forces between molecules in crystals but our
“forces” are not symmetric. Thus our system is not a hamiltonian system.
Nevertheless, our results resemble the dynamical phase transition in the
model of the molecular chain rapture under the action of external force,
see [7]. However here we do not need the double scaling limit used in [7].

We will see however that for the stability, besides Fj, also friction
force —awy(t), restraining the growth of the velocity vy (¢), is necessary,
where the constant a > 0 should be chosen appropriately. Taking F}, to
be simplest possible

Fi(t) = w?(2r-1(t) — 21(t) — d) (2)

we get that the trajectories are uniquely defined by the system of
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equations for k > 1

dQZk . de 2 d,Z}C

Stability depends not only on the parameters «,w, d but also on the
initial conditions and on the movement of the leader (on its velocity and
acceleration). This is easy to understand for the case of N + 1 particles.
For example, for N = 1, where the calculations are completely trivial,
assume also the simplest leader movement

zo(t) =vt,t >0 (4)
Then, if initial condition for the second particle are

2(0) = —a=—(d+ %v), 21(0) = v,

then z1(t) = —a + vt for any d, a,w. However, if we change only the
initial velocity 2;(0) = w to some w > 0, then for any a,w there exists
w1 = w1 (e, w, d) such that for any w > w; collision occurs.

For N = 2,3, ... the situation becomes more and more complicated,
and its study has no much sense. That is why we study, in the space of
two parameters «, w (for fixed d), stability conditions, which are uniform
in N and in large class of reasonable initial conditions and reasonable
movement of the leader.

Natural (reasonable) initial conditions are as follows: at time 0 it
should be

0 < inf r¢(0) < suprg(0) < oo
k=1 k=1
As for the leader movement, it is sometimes sufficient to assume that
the function zo(t) were continuous, but in other cases it is assumed to
twice differentiable and has the following bounds on the velocity and
acceleration of the leader:

sup |ZO(t)| = Umax, sup |ZO(t)| = Qmax, (5)
20 20
It appears that under these conditions there are 3 sectors in the
quarter-plane R3 = {(a,w)}: 1) a > 2w, where we can prove stability,
2) a < /2w, where we can prove instability, and the sector 3) v/2w <
a < 2w, where we can prove stability only for more restricted classes of
initial conditions and of the leader motion.
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Computer simulation of traffic low and
mathematical description

A.V. Podoroga
Lomonosov Moscow State University, Moscow, Russian Federation

There are a lot of different approaches in the traffic flow theory. One
of the most popular is macroscopic approach. Under certain conditions
a traffic flow can be considered as a flux of special particles. We denote
density and velocity of traffic flow on a neighbourhood of z at the
moment ¢ as p(x,t) and v(z,t), respectively. The value of flow ¢(z,t)
is the average amount of vehicles, that passed throw the point z in
the unitary interval of time (for example an hour) at the moment t.
These quantities are related by the conservation law, the continuity
of flow and the equation of state. They are similar with ones from
the hydrodynamics. The car velocity should be high if the density is low,
and controversially otherwise. Therefore we can assume that velocity is
a certain steadily decreasing function of the density

v=V(p), V=Vl  0<p<pmax (1)
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Here punax is the value corresponds to a traffic jam. One of the most
important relation is

q= Q(p)v 0 < 14 < Pmax; (2)

which called the fundamental diagram. This dependence between the flow
value and the density plays the key role in the traffic flow theory.

In this report we discuss some problems connected with
reconstruction of the dependence (1) and (2) using computer simulation.
We introduce a program “Cars” that simulates a traffic flow using
microscopic approach. Therefore, every vehicle is treated as an individual
object. It has the set of parameters, such as length, maximum speed,
maximum and minimum acceleration and deceleration and so on. All
these parameters correspond with the real values. Every car moves
using the same algorithm that prevents a colliding but allows to move
as quickly as possible. The algorithm handles the data available to
an “ordinary” driver. The control parameter is the acceleration of the
vehicle. The configuration of the road is a single-lane one-way road. We
also examine a ring road that allows us to study an autonomous clusters
of cars. Using our program we can obtain a numerous amount of data.
Then we use these data for establishing connections between variables
and for revealing some typical phenomena.

We emphasize some thematics of our research:

1. Connection between macroscopic quantities p, v, ¢ with
microscopic parameters of individual cars;

2. Ocular demonstration of mathematical effects which exist in quasi-
linear equation theory (strong discontinuity, shock waves, Rankine—
Hugoniot condition, bifurcation of solutions and etc.)

3. Forming of the traffic jams which move backwards.

Many of discussed phenomena were mentioned in previous papers [1-6].
References

1. Gasnikov A. V. i dr. Vvedenie v matematicheskoe modelirovanie
transportnykh potokov: Uchebnoe posobie [Introduction in mathe-
matical simulation of traffic flows]/ Pod red. A. V. Gasnikova.
Izdanie 2-e, ispr. i dop.—M.: MCNMO, 2013.—427 p.

2. Lighthill M. J., Whitham G. B. On Kinematic Waves. II. A Theory
of Traffic Flow on Long Crowded Roads // Proceedings of the Royal



Predictive models for congested traffic 199

Society of London. Series A, Mathematical and Physical Sciences.—
1955.—Vol. 229, No 1178.—P. 317-345.

3. Nagel K., Schreckenberg M. A cellular automaton model for
freeway traffic // Journal de Physique I France.—1992.—Vol. 2,
No 12.—P. 2221-2229.

4. Smirnov N. N., Kiselev A. B., Nikitin V. F., Umashev M. V.
Matematicheskoe modelirovanie avtotransportnykh potokov [Ma-
thematical simulation of traffic flows].—M.: MGU, 1999.—31 p.

5. Lax P. D. Hyperbolic Partial Differential Equations (Courant Lec-
ture Notes). Courant Institute of Mathematical Sciences. — NY:
American Mathematical Society, 2006 — 217 p.

6. Evans L.C. Partial Differential Equations. — (Graduate Studies in
Mathematics. Vol. 19). American Mathematical Society, 2010. —
749 p.



Asymptotic analysis of
complex stochastic systems

Limit theorems for multichannel queuing
systems with abandonments

L.G. Afanasyeva and A.V. Tkachenko
Lomonosov Moscow State University, Moscow, Russia

We consider queuing systems with r heterogeneous channels.The
service time 70! of the n-th customer by the i-th server has distribution
function B;(z) with finite mean 8;'. Let 8 = >_/_, 8;. Customers are
served in order of their arrivals at the system. Service times of customers
are independent random variables.

The input flow X(¢) is assumed to be regenerative. Let 6; be the
i-th regeneration pOiIlt of X(t), T = 01 — 97;_1, fz = X(@) — X(oi—l)
(1 =1,2,...;6p = 0). Then 7; is the regeneration period, ; is the number
of customers arrived during the i-th regeneration period. Assume that

-1

a=FE¢ <oo, 7=FET1; <00, and A = lim %"’):ar a.s..
t—o00

Let {v,}52; be the sequence of independent identical distributed
random variables and it does not depend on the input flow and service
times. The random variable v,, can be an improper one, i.e. & = P{v,, =
oo} > 0. Denote C(x) = P{v, < z|v, < oo}. Moreover v,, bounds the
waiting time of the nth customer in the system, i.e. if the nth customer
does not start it’s service during the time v,, then it leaves the system
without service at all. Let ¢(¢) be a number of customers in the system at
time ¢. Under some additional assumptions ¢(t) is a regenerative process
and 6; is it’s point of regeneration if ¢(6; — 0) = 0.

Theorem 1. The process ¢(t) is ergodic iff p = a1 < 1.
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The proof is based on the lemma about stochastic boundedness
and ergodicity of the regenerative process proved in [Afanasyeva,
Tkachenko, 2014] and construction of majorizing process. Then results
for regenerative process with finite mean of the period of regeneration
[Thorisson, 1987] are applied.

First we give the following result concerning so called super-heavy
traffic situation (p > 1).

Theorem 2. If p > 1 (p =1) and for some § > 0

Erit? < oo, EEY < oo, E(n})* < oo, i=Tr, (x)

then the normalized process Gy, (t) = %\}Tﬂ;l)m

weakly converges on

any finite interval [0, ¢] to Brownian motion (absolute value of Brownian
motion) as n — oco. Here

2 2 2 2
R Qo aa) o 2aaccov (&1, T
02:0_%(4—0/23,0)(: T£_|_( )3 T 2(5, ),

T T

K
0[2; = Zafﬁ? 02 =Var(rn), 02 =Var(&), o2 =Var(nl), i =1,r.
i=1

In order to prove this theorem we use Brownian approximation for
modified multichannel systems [Iglehart, Whitt, 1970] and construct two
majorizing systems.

Second we focus on the process ¢(t) in the heavy-traffic situation
(p T 1). We consider time-compression asymptotic. Namely the input
flow is given by the relation

wo-x( (- )

so that the traffic coefficient depends on the parameter n and p, 1T 1
as n — 00. Let ¢, (t) be the process ¢(t) for the system with input flow
X (t).

Theorem 3. Under conditions (x) the normalized process G, (t) =

%\/g) weakly converges on any finite interval [0,¢] as n — oo to the

diffusion process with reflecting at the origin and coefficients (—f,5?),
2
where 62 = 02 + ZX.
The proof is based on the construction of the functional limit of the
fluid process [Whitt, 2002] and some estimates for number of customers
in the system.
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Waiting-time tail probabilities in queue with
regenerative input flow and unreliable server

S.Z. Aibatov
Lomonosov Moscow State University, Moscow, Russia

We consider a single-server queueing system with a regenerative input
flow A(t) (Reg/G/1). Here A(t) is the number of customers arrived
during [0, t]. The random variable 6; is said to be the ith regeneration
moment of A(t) and 7; = 0; — 0;_; is the ith regeneration period. Let
& = A(0; — 0) — A(0;—1) be the number of arrived customers during
the ith regeneration period. Assume that E§; < oo and E7; < co. The
intensity of A(t) is the limit A = tlgglo AWM with probability one (w.p.1).

t
It is easy to see that A = E—ﬁi

Assumption 1.The greatest common divisor of numbers (i =
1,2,...) such that P(& = 1) > 0 is equal to one.

Service times of customers are defined by the sequence {7, }°2; that
consists of i.i.d. random variables and does not depend on A(t). The
distribution function of 7, is B(x), b = En < 0o and b(s) = Ee™"™.

Let W (¢) be the virtual waiting time process and W,, = W(6,, — 0),
wy, = W(t, — 0). Here t,, is the moment of the nth customer arrival
at the system. Define functions ¥(x) = fllglo PW(t) < z), ®(x) =

lim P(W, <) and F(x) = nl;rréo P(w, < ).

n—oo

It is known (see e.g. [1]) that ¥(x), ®(z) and F(z) are distribution
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functions if and only if the traffic intensity
p=Ab<1.

Here we aim to analyze the asymptotic behavior of functions ¥(z), ®(x)
and F(z) as z — oo. For any distribution function F(x) we put F(x) =

1— F(z). As usual f(x) ~ h(z) as x — oo if lim igf; =1. Asin [3], we
Tr—00 it

define the following class of distributions.
Definition 1.4 distribution function F(z) on R with finite mean
belongs to the class of the strong subexponential distributions if

/0r F(z —y)F(y)dy ~ 2mF(x),

oo =
where m = [~ F(y)dy.

Theorem 1.Let B(x) be a strong subexponential distribution function
and Assumption 1 be fulfilled.

(i) If there exists ¢ > b such that P(¢ > x/c) = o(B(x)), then

_ A o0

D(x) ~ 1% B(y)dy asx — oo. (1)

(i) If there exists ¢ > b such that \/P(§ > x/c) = , then (1)
holds for the function F(x).

(iii) If there exists ¢ > b such that \/P(£ > z/c) = o(B(z)), Er? < oo,
then (1) holds for the function ¥(z).

Further we consider a queueing system Reg/G/1 with an unreliable
server. The breakdowns of the server occur only when it is occupied by a
customer. Besides, if the server is in the working state then breakdowns
appear at random in the sense that the time until the next breakdown
is exponentially distributed with a parameter v. After breakdown the
server is repaired during the random time with distribution function

D(z), mean d and d(s f e %*dD(x). There are various disciplines

for continuation of the serv1ce after server restoration. Here we consider
the preemptive repeat different service discipline when service is repeated
from the start and the service time after restoration is independent of
the origin service time. This discipline was considered in the pioneering
paper [4] where the notion of completion time was introduced. This
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notion made it possible to apply results for systems without interruptions
to investigate a system with unreliable server. Let us remind that
completion time is the sojourn time of the customer on the server with
regard of repairs of the server (if there are). Introduce the distribution
function of completion time B.(z) and mean b., then

D(z) asz — oo,

o LU (1)

Corollary 1. For a queueing system with an unreliable server let the
distribution function of the repair time D(x) be strong subexponential.
All conditions from (iii) of Theorem 1 are satisfied with B.(x) instead
of B(z) and Assumption 1 holds. Then

O(x) ~ U(z) ~ F(x) ~ A= b V))) /DO D(y)dy as x — oc.

(
(1 — oo)b(v

As we can see from Corollary 1, if we have the preemptive repeat
different service discipline then the distribution function of service time
has no influence on asymptotic behavior of ¥(x). A queueing system
M/G/1 with preemptive resume service discipline was considered in [2].
For this discipline the customer’s service after a restoration continuous
from the point at which it was interrupted. It was shown that if B(x)
and D(z) are regularly varying distributions then

Bu(x) ~ B ( ) L UbD(x) asz - oo,

x
1+vd
Thus if the function D(z) is lighter than B(x) as z — oo then the
distribution B(z) defines asymptotics of ¥(x).

These results mean that the asymptotic behavior of ¥(x) as = —
oo is completely defined by the intensity A of the input flow and the
distribution function of the service time (or repair time if the server is
unreliable). Therefore the structure of the input flow does not play any
role if condition (#i¢) holds. This condition means that the tail of ¢ is
essentially lighter than tail of 7. We strongly believe that otherwise the
dominate part may belong to the distribution of &.
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Limit theorems for queuing system with an
infinite number of servers and regenerative
input flow

E.E. Bashtova and E.A. Chernavskaya
Lomonosov Moscow State University, Department of Mathematics and
Mechanics, Moscow, Russia

This paper focuses on a queuing system S with an infinite number
of servers and regenerative input flow X (¢), given on (Q,F,P). All
trajectories are left-continuous non-decreasing functions with integer
values, X (0) = 0. The definition of this process is [3].

Definition. The flow X (t) is regenerative if there exists an increasing
sequence of random variables {6;},~,, 6o = 0, such that the sequence

{Ri}ico ={(X(Oic1 +1) — X (05-1)),0; — 0i_1,t € [0;0; — 0;_1)};2,

consists of independent identically distributed random elements on
(Q,F,P).

The value 0; is called the i-th moment of regeneration, 7, = 6; — 6,1
is the i-th period of regeneration.

We assume that {7;};-, are independent identically distributed
random variables(i.i.d.r.v.), with distribution function F'(x).

Let & = X (6;) — X (0;—1) be the number of customers arrived during
the i-th regeneration period.

Service times of customers {7;;,j = 1,...,&,? > 1} are i.i.d.r.v. with
distribution function B(t). Denote B(t) = 1 — B(t). We assume that the
following condition is fulfilled.
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Condition. For the function B(t) asymptotic behavior takes place

F(t)w% as t — oo,
0 < B < 1. Here L(t) is slowly varying function as t — cof4].
The focus of this paper is the process ¢(t), which is the number of
customers in the system S at time ¢.
Denote \ = ﬁg—ii Let us formulate our results.
Theorem 1.Suppose that ET7 < 0o, r > 2, E&2 < oo. Then

_ 18
alt) = X L) iN(O,/\), as t — oo.
t1=BL(t)

Theorem 2.Suppose that ET{ < oo, r > 2, B < oo. Then

q(t)

P,
m%)\, as t — oo.

Description of auxiliary systems and their relationship with
the initial. To study the asymptotic behavior of the queue length in
the system S we introduce two auxiliary systems. In the first system
S1 customers enter only at the beginning of the regeneration period
[0:—1,6;], by group & , ¢ > 1. In the second system group of customers
comes at the end of the period of regeneration, we denote it S5. Let
¢;(t) be the number of customers in the system S; at time ¢ respectively,
i=1,2.

Let A(t) be the number of customers that left system Sp, but not
left Sy at time t. For A(6,,) the following representation holds

n &
Afn) =)D ki),

i=1 j=0

L, Op—0; <mij <Op—0;_1,
0, otherwise.

Note that ¢1(t), ¢2(t), and ¢(t) satisfy following relations with
probability 1

where £;;(0,) =

a1 (Ony) < at) < g2 (One)Henvw+1, @ One) = a One)+A One) -
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The last inequality shows that in order to obtain limit theorems for
the process g(t), we need limit theorems for q1 (On)), En(e)+1, ANe)-
Some auxiliary results. Let us formulate the limit theorem for
@1 (On@), ENy+1s A (On(ry). Denote B, = ﬁﬁ—f}n“ﬂﬁ(n)-
Theorem 3.Let E7] < 0o, r > 2, B2 < co. Then
MT_E’LiN(O,l) as n — 0o.

VE,

Lemma 1.Let B¢ < oo, ET{ < 00, r > 2. Then

A(b,
(1_[;) 20, asn — oo
n-z

Lemma 2. For any k € N

1

hm P (é-TN(t)+l = k) = E—Tl

t—o0

/ P(T2>{E,£2:]€)dx.
0

In order to obtain similar results for ¢;(0n(n)), and A(On(,)) as in
Theorem 3 and Lemma 1, we need the following Theorem.

Theorem 4. (Theorem 5,[2]) Let Y, 4 Y, n— oo and
1. %gN,n—)oowith P(O< N <o0)=1,

2. If Y, is R-mizing with respect to o(N), that is, for each A such
that P(N € A) > 0 holds P(Y,, € x|N € A) — P(Y € %),

3. if Ay o= max |Y,, —Y,|, then

[m—n|<nc

lim sup limsupP(A,.>¢|N € B)=0.
c=0(B.P(B)>0} n—oo

Then Yy, Y.

Verification conditions of this theorem is based on results of following
lemmas. Let F be o-algebra, formed by variables {&;,6;}:° ;.

Lemma 3.Sequence {Z,, =Y, —Y,}, .-, forms a conditional N-
demimartingale given F [1]. N

Lemma 4.Let E7] < oo, r > 2, E¢? < co. For any constant 0 <
¢ < 1 there exists no(c) such that for n > ng(c) we have the following
inequality for limits in probability
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E((Yn_}/n(lfu))2"r)
nl=BL(n)

1. lim
n— oo

< Ci (1 —cB (1- c)lfﬁ) + Cocl= 58,
E((Yn*Yn(Hc))z\}')

2. lim TTRL(D)

n—oo

<CL((A+e) P =P —1) 4 Coct=F.

for some Cq, Co
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On ergodic averaging with and without
invariant measure”

M.L. Blank
Russian Academy of Sci. Inst. for Information Transmission
Problems,and National Research University Higher School of
Economics, Moscow, Russia

The classical Birkhoff ergodic theorem in its most popular version
says that the time average along a single typical realization of a Markov
process is equal to the space average with respect to the ergodic
invariant distribution. This result is one of the cornerstones of the entire
ergodic theory and its numerous applications. In this talk I’ll address
two questions related to this subject: how large is the set of typical
realizations, in particular when there are no invariant distributions, and
how this is connected to properties of the so called natural measures
(limits of images of “good” measures under the action of the system).

Our main results concern with necessary and sufficient conditions
under which for a given reference measure (e.g. Lebesgue measure),
whose support might be much larger than the support of the invariant
one, the set of typical initial points is of full measure. It turns out that one

*This research is supported by RFBR and RNF grants.
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of the main assumptions here is the ergodicity of the natural measure.
To deal with the situation when the invariant measure does not exist we
extend the notion of ergodicity to measures being non invariant.

To give an example of a system without invariant distributions
satisfying our setup, consider the following deterministic Markov process:
a family of maps from the unit disc X := {(¢,R): 0< ¢ <27, 0< R <
1} into itself defined in the polar coordinates (¢, R) by the relation:

T(¢,R) :=
_ [(p+2ra+ B(R—r)mod 2m, y(R—7r)+71) ifr(R—r)#0
(¢ + 27 mod 27, (1+7)/2) otherwise

with the parameters «,fS,v,7 € (0,1). One can show that for
any probability measure p absolutely continuous with respect to the
Lebesgue measure, the sequence of measures %Zz;é TFu (Cesaro
averages of images of the measure p under the action of T') converges
weakly to a certain limit measure pg on the circle {R = r}, but this
measure is no longer invariant. Depending on the choice of the rotation
parameters «, 3 € (0,1) properties of the set of upr-typical points turn
out to be very different. In particular, if these parameters are rationally
independent, the limit measure is unique and the set of up-typical points
coincides with the entire unit disk.

Questions discussed above turn out to be especially actual in the
case of large systems, when even in the presence of ergodic invariant

measures, their supports cover only a small part of the phase space.
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Asymptotic behavior and stability of some
applied probability models

E.V. Bulinskaya
Lomonosov Moscow State University, Moscow, Russia

Applied probability research domains such as insurance, inventory
and dams, finance, queueing theory, reliability and some others can be
considered as special cases of decision making under uncertainty (or
risk management) aimed at the systems performance optimization, thus
eliminating or minimizing risk.

The crucial question in all investigations pertaining to decision
making is: How to choose an appropriate mathematical model? There
always exists a trade-off between simplicity and precision. A simple
model gives a possibility of easily obtaining an explicit solution. However
the poor model fit is the fist source of decision errors. A complicated
model giving precise description may also lead to errors. Namely,
numerical solution needed for complicated models and parameters
variability constitute the second source of decision errors. Perturbations
of the underlying processes provide the third source of decision errors.
Thus, the model stability to small fluctuations of model parameters and
distributions of basic processes is a must, see, e.g., [1-3] and references
therein.

It is well known that the same mathematical model can arise in
various applications. So, for certainty, we are going to speak below
about insurance models, although many conclusions will be valid for
other fields. The primary task of insurer is redistribution of risks and
satisfaction of policyholders claims. This explains the popularity of
reliability approach, that is, thorough analysis of ruin probability. The
classical Cramér-Lundberg model introduced in 1903 and significantly
developed during the first part of the 20-th century is still the
base for many investigations and generalizations. Being a corporation,
insurance company has a secondary but very important task, namely,
dividends payment to its shareholders. So, the alternative so-called
cost approach was started by De Finetti in 1957, see [4]. Modern
period in actuarial sciences evolution is characterized by consideration
of a larger class of stochastic processes. Not only compound Poisson
processes describe insurance company performance but renewal and
regeneration processes, martingales, diffusion, Markov, semi-Markov and
Lévy processes. Moreover, interplay between insurance and finance
is typical nowadays, see, e.g. [5]. Banks are selling insurance and
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reinsurance contracts whereas insurance companies are interested in
investment and capital injections, see, e.g. [6-8].

Since decisions about reinsurance and dividends payment are usually
made at the end of the year discrete-time models were introduced,
see, e.g. [9-12]. It turned out that such models can also be used for
approximation of continuous-time ones.

We begin by treating the models studied in [11,12] and their generali-
zation to the case of two-dimensional claims. Optimal and asymptotically
optimal policies are established solving Bellman functional equations.
Systems stability is verified by means of Sobol’ method and local
sensitivity analysis. The results are used to implement a numerical
algorithm letting obtain some approximations to optimal solutions
for continuous-time models. Convergence rate to limit distribution is
also studied using various metrics, see, e.g. [13]. In case of unknown
distributions of underlying processes it is appropriate to use stochastic
orders to compare various models. Finally, we apply empirical processes
(see [14]) to get statistical inference enabling us to use a sequence of
observations for calculations of optimal policy parameters.
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Stability of the solution in the optimal
reinsurance problem

J.V. Gusak
Lomonosov Moscow State University, Moscow, Russia

We consider a periodic - review insurance model under the

following assumptions. One-period insurance claims form a sequence
of independent identically distributed nonnegative random variables
{Xk}, k> 1. Each X} has a distribution as that of the random variable
X with finite mean and cumulative distribution function Flx.
In order to avoid ruin the insurer maintains the company surplus above
a chosen level a by capital injections at the end of each period. A
nonproportional reinsurance is applied for minimization of total expected
discounted injections Ay, (u) during a given planning horizon of n
periods, where u is the initial surplus of the insurance company, u > a.
Insurance and reinsurance premiums are calculated using the expected
value principle. The optimal reinsurance strategy for this problem has
been established in the paper[1].

This work relies on the results obtained in [1] and considers the
stability of minimal expected injections to the fluctuation of claim
distribution. More precisely, suppose one-period claim Xy, k > 1 has the
same distribution as random variable Y with cumulative distribution
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function Fy, which in turn differs from function Fx. In this case, how
does the amount of optimal capital injections change? The following
theorem gives us the answer to this question under the assumption
that random variables X and Y are close in Kantorovich metric. The
metric is calculated according to the definition in [2] and equals to
K(Xa Y) = f()oo |FX (t) - FY(t)|dt'

Theorem. Let X and Y be nonnegative random variables with finite
mean defined on the same probability space, than the following inequality
holds for every n > 1

u>

U [ (1) — Py ()] < (i aicm) (1+ 1+ m)(X, ),
=0

where 0 < o < 1 is a discount coefficient, [ > 1 and m > [ denote safety
loadings on the insurance and reinsurance premiums respectively, A,
refers to minimal discounted expected injections when one-period claim

1—a™ !
l—o

distribution function is equal to Fy, C,,_; =

Due to the fact that in practice theoretical distributions are usually
unknown, we also investigate the stability of the solution, when
distribution functions Fx, Fy are replaced by their empirical estimates.
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On a classical risk model with a step barrier
dividend strategy
A. Muromskaya
Lomonosov Moscow State University, Moscow, Russia

We consider an insurance company performance with dividends pay-
ment. According to the Cramer-Lundberg model, the surplus of the
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insurance company paying dividends is as follows:
X@t)=xz+ct—St)—D(t), t >0.

Here {S(t)} is a compound Poisson process with intensity A, D(t) denotes
total dividends paid until ¢ and 2 = X(0). Premiums are acquired
continuously at the rate ¢ and the claim amounts are nonnegative i.i.d.
random variables with distribution function F'(y). Let T also denote the
time of ruin, namely, 7' = inf{t : X (¢) < 0}.

Dividends are paid in conformity with some dividend strategy. One
of the most popular dividend strategies are so-called constant barrier
strategies. In the framework of the constant barrier strategy with level
b, no dividends are paid whenever X (¢) < b and dividends at the rate ¢
are paid whenever X (t) = b. If X(¢) > b, an amount X (¢) — b is paid out
immediately as dividends. Constant barrier strategies were considered in
many papers devoted to dividend theory, such as Gerber et al. [1] and
Buhlmann [2]. However constant barrier strategies have one significant
disadvantage, namely, the barrier level can not be changed throughout
the life of the insurance company. In this regard we examine modified
barrier strategies, according to which the barrier level b can be changed
after the moments of claim occurrences T; (step barrier strategies).

At first let us consider the model with the barrier that can be changed
only a finite number of times (after each of the first (n — 1) claim
occurrences). In this case barrier level changes up to the ruin time in
conformity with the following rule: b = b; on the interval [T;_1,T;) for
1<i<n-—1(weassume Ty = 0) and b = b, if t > T,,_1. The step
barrier function is supposed to be nondecreasing: by < b < ... < by,.

Let V(x,b) and V(x,by,...,b,) denote the expected discounted divi-
dends paid until ruin in the models with constant barrier and step barrier
strategies respectively. Then the following theorem holds true.

Theorem 1. For all 0 < x < b; and by < by < ... < b,, n > 2, the

function V(x,b1,...,b,) can be expressed as:
n—1

V(2,b1,. o b)) = Vi@, ba) + > [1 =V (bis ba)] Vg, o (@, b1, -, bi),
i=1

where Vir,_, 7,)(%,b1,...,b;) is the mathematical expectation of the

discounted dividends paid on [T;_1,T;).

Remark. Functions Vipy, | 1)(z,b1,...,0k), 1 < k < n —1, can be
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calculated sequentially with the help of the law of total probability:

_ byi—z
e~ (A+0) =5 ,

Cc
‘/[O,Tl)(xﬂbl) = )\+5

‘/[kath-)(xa blv sy bk) =

by —x
/ c
0

S by
+ﬁ /\e*<*+5>t/ Vit o1 ) (b1 = Yy boy .. bp)dE (y)dt, k> 2.
0

1—x

x+ct
Ne— (A0t / Vit, o (@ 4 ct —y,bo, ... b)dF (y)dt+
0

Now let us consider the probability of ruin ¢ (z) = P(T < 00| X (0) = z)
in the model with a barrier level that can be changed after every claim
occurrence Tj,j > 1, (i.e. infinite number of times). It is also assumed
that the equation

A+re= )\/ e"YdF (y)
0

has the unique positive solution R. If this solution exists we call it the
adjustment coefficient or the Lundberg exponent ([3], [4]). The coefficient
R plays an important role in the estimation of the ruin probabilities, in
particular, in our model we have the following result.

Theorem 2. The ruin probability ¢(z) satisfies the inequality
Rc
—Ra —Rb,
Y(z) <e + 3 ;zl e .

This theorem is a generalization of the Lundberg inequality which is
proved for the classical risk model without dividend payments.

Examples of the step barrier functions, for which the upper bound
for the ruin probability is less than 1, will be given. Note that in the
framework of the constant barrier dividend strategy the ruin of the
insurance company occurs almost surely.
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Weakly supercritical branching walks with
heavy tails*

AL Rytova and E.B. Yarovaya
Lomonosov Moscow State University, Moscow, Russia
Steklov Mathematical Institute, Moscow, Russia

Branching random walks (BRWs) are usually described in terms
of birth, death and walk of particles. We consider a continuous-
time symmetric BRW on a multidimensional lattice. In [1], a detailed
description of such BRW for the case of finite variance of jumps and one
source of branching is given. In the present work we study the case of
BRWs with heavy tails when intensities of the underlying random walk
are subjected to a condition leading to infinite variance of jumps, see,
e.g., [2].

Quite a number of authors investigated the random walks with
heavy tails, see the bibliography in [3]. Most of them, as a rule, have
restricted themselves to consideration of the one-dimensional case. In
the multidimensional case of a spatially homogeneous symmetric random
walk with infinite variance of jumps, proofs of global limit theorems
for the transition probabilities of a random walk, in the case when the
temporal and spatial variables jointly tend to infinity, can be found in
[4]. The corresponding results were proved under an additional regularity
condition imposed on the transition intensities of a random walk. In
[5], a multidimensional analog of the well-known Watson’s lemma (see,
e.g., [6]) was proven which helps to investigate in [5] an asymptotic
behaviour of the transition probabilities for fixed spatial coordinates
without making any additional assumptions on the transition intensities.

The goal of the work is to apply obtained results to find the
asymptotic behavior of the moments for BRWs with infinite variance of
jumps and the only branching source. Employing the scheme suggested
in [1] for BRWs with a finite variance of jumps, we find the generating
functions, differential and integral equations for the moments of the
numbers of particles, as in an arbitrary lattice point as on the entire
lattice for BRWs with infinite variance of jumps. Abandonment of the
finiteness of the variance of jumps, as was shown in [2,7], leads to changes

*This research is supported by the Russian Science Foundation, project no. 14-21-
00162.
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in the BRW’s properties: as a result the BRW becomes transient even
on one- and two-dimensional lattices. The minimal value of the intensity
of the branching source, under which in the spectrum of the operator
describing the evolution of the mean numbers of particles there appear
a positive eigenvalue, is called critical. The asymptotic behaviour of
Green’s functions and eigenvalues of the evolutionary operator, for the
BRW with heavy tails and intensities of the source exceeding but still
close the critical value, is studied in [8]. Notice that their behaviour
differs drastically from the case of finite variance of jumps. Using the
results of [8] we obtain a number of statements on asymptotic behavior
of the first moments of the numbers of particles for weakly supercritical
BRWs. The obtained results are generalized then to the case of a finite
number of branching sources for weakly supercritical BRWs with heavy
tails.
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Asymptotic behaviour of generalized renewal
processes and some applications

A. Sokolova
Lomonosov Moscow State University, Moscow, Russia

Let {T,}n>1 be a sequence of independent non-negative random
variables, F} is the distribution function of variable T ; for some fixed
integer I > 1, ¢ = 1,2,.... Let {X;}i=0,....k—1 be another sequence
of independent random variables (r.v.), each X; has its distribution
function G;. The sequences {T,,} and {X;} are also supposed to be
independent.

Let us define generalized delayed periodical renewal process in the
following way: S, = Xo+...+X,,0<n < k-1, whereas S,, = Sip_1+
T+ ...+ Th—g41 forn > k.

The partial sums S,, are called the renewals and the summands T;
and X; are the intervals between the renewals.

The main object of our consideration is the counting process

Ny =min{k > 0: S, > t},
representing the number of renewals that have occurred by time t.

The purpose of the talk is investigation of the asymptotic
behaviour of defined renewal process N; and application of obtained
results to the risk theory.

Using tauberian theorem (see, e.g. [1]) the asymptotic form of renewal
function is found. The results concerning simple renewal processes are
also used (see, e.g. [2], [3], [4]). The analogues of the strong law of large
numbers, central limit theorem and functional limit theorem are proved.

The main steps of research:

1. Finding the limit behaviour and distribution of the process on the
basis of asymptotic behaviour of sequence of renewals.

2. Introduction of the auxiliary random elements by means of
centering and normalization of partial sums of process.

3. Proof of the weak convergence of auxiliary elements to a Wiener
process.

4. At last we proceed to the process constructed according to counting
process Ny using the theorem about the random change of measure

(see, e.g. [3]).
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Theorem 1. Let S,, be a generalized delayed periodical renewal
process and Ny a counting process associated with it. Suppose that
all the summands Ty;4; have finite mathematical expectation p; < oo,
1 =1,...,1. Then with probability 1

where p = p1 + ...+ .

Theorem 2. Suppose that r.v.’s Tj;4; have finite mathematical
expectations p; < oo and variances 0 < o7 < oo, respectively, i =

%

1,...,], and r.v.’s X; have finite mathematical expectations v;. Then,
as t — oo, we have
Nt — tlﬂil d
——F— — {~N(0,1),
oly/tp=3
where = p1 + ...+, 0> = 0% +... + 0}, % denotes weak

convergence, and £ ~ N(0,1) means that r.v. £ has standard Gaussian
distribution.

Theorem 3. Let us define the sequence of random functions
Npi(w) — ntlp™!
Z,(t,) = D) = il

alu=3/2\/n
where p =1 + ...+, 0> =02 +...+ 0}

For defined random functions Z,, (¢, w) the following expression holds:

D
Zn = W,

where W is a Wiener process and 2 denotes weak convergence in the
space DI[0,1] .
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Branching random walks.
Spectral approach®

E.B. Yarovaya
Lomonosov Moscow State University, Moscow, Russia
Steklov Mathematical Institute, Moscow, Russia

Stochastic processes with generation and transport of particles are
used in different areas of nature sciences: statistical physics, chemical
kinetics, etc. [1-2]. Behavior of processes with generation and transport
of particles in many ways determined by properties of a particle motion
and a dimension of the space in which the particles evolve. In [3]
for studying a change of homopolymers spatial structure under the
influence of temperature there was suggested an approach based on a
resolvent analysis of the evolutionary operator. Unlike to [3] we consider
a multidimensional integer lattice instead of R? and a random walk
instead of a Brownian motion [4]. The description of a random walk
in terms of Green’s function allows us to offer a general approach to
investigation of random walks with finite as well as with infinite variance
of jump.

We consider a continuous-time symmetric branching random walk
on a multidimensional lattice with a finite set of the particle generation
centres, i.e. branching sources [5]. Branching random walks models
are relevant in numerous applications, including population studies.
Particular attention is paid to branching random walks with infinite
variance jumps. Such branching random walks can be used in modeling
of complex stochastic systems with singular spacial dynamics, implying
the existence of heavy-tailed distributions of random walk jumps [6].

The main object of study is the evolutionary operator for the mean
number of particles both at an arbitrary point and on the entire
lattice. The existence of positive eigenvalues in the spectrum of an
evolutionary operator results in the exponential growth of the number
of particles in branching random walks, called supercritical in such
case. For supercritical branching random walks, it is shown that the
amount of positive eigenvalues of the evolutionary operator, counting
their multiplicity, does not exceed the amount of branching sources on
the lattice, while the maximal of these eigenvalues is always simple [6].
We demonstrate that the appearance of multiple lower eigenvalues in
the spectrum of the evolutionary operator can be caused by a kind

*This research is supported by the Russian Science Foundation, project no. 14-21-
00162.
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of ‘symmetry’ in the spatial configuration of branching sources [5].
The presented results are based on Green’s function representation of
transition probabilities of an underlying random walk and cover not only
the case of the finite variance of jumps but also a less studied case of
infinite variance of jumps.
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Asymptotic properties of marginal
distributions in a polling system with batch
renewal inputs and limited service policy*

A.V. Zorine and M.A. Fedotkin

National Research Lobachevsky State University of Nizhni Novgorod,
Nizhni Novgorod, Russia

Consider a polling system with m < oo stations, batch renewal
inputs, limited service policy, and fixed switch-over times. Inter-arrival

*This work was fulfilled as a part of State Budget Research and Development
program No. 01201456585 ”Mathematical modeling and analysis of stochastic
evolutionary systems and decision processes” of National Research Lobachevsky State
University of Nizhni Novgoroda and supported by State Program “Promoting the
competitiveness among world’s leading research and educational centers”.
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times at the j-th station are i.i.d. non-negative random variables with
probability density function a;(¢). A batch is size b with probability f;(b),
b=1,2,.... Server sojourn time at the j-th station is a non-random
constant T5;_1 > 0. During this interval at most ¢; customers at the
station can be serviced. These may be both the customers present at
the station at the beginning of the service slot and the newly arriving
customers. Service times of individual customers are not specified and
are mutually dependent in a way they manage to leave before the slot
ends. Serviced customers leave the queueing system. After station j < m
the server switches to the next station (j+1), after the station j = m, the
station 1 is visited. Switch-over time is a non-random constant T5; > 0.

We observe the queueing system at epochs 7;, i =0, 1, ... of service
periods and switch-over periods termination. Denote by I'; € I', ' =
= {rM, 1@ . T®™} the server state during time interval (r;,_1, 7],
i=1,2,...,by Iy € T the server state at time 7, where I'?/=1) stands
for service at the station j and I'®/) stands for switch-over from the
station j to the station j + 1 if j < m and from station m to station 1
if j = m. Let ;; be the queue length at the station j at time 7;, (;; be
the residual inter-arrival time at time 7; at the station j, i =0, 1, ...
Put ki = (K1is-- - 6m,i), G = (C1iy---5Cm,i). In [1] a probability space
(Q, 3§, P) was constructed and a stochastic sequence

{(Fi,lﬂi,g);izo,l,...} (1)

was defined on it and the Markov property was proven for sequence (1)
and for sequences

{(I‘l,nw,gﬂ),zzo,l,}, j:l,,m (2)
Stochastic sequences (1) and (2) are general Markov chains [2] with
uncountable state spaces. Further, given that for each 7 = 1, ..., m

there exists a t§ > 0 such that a;(t) = 0 for ¢ < tJ and a;(t) > 0 for
t > 19 and f;(1) > 0, in [1] the general Markov chain (1) was proven to
be 1-irreducible [2]. Moreover, if each a;(t) is continuous for ¢ > t? then
some small sets [2] of the general Markov chain (1) are known.
Denote by Qj,i(rvxvy) = P({w: Pi = F(T); Rji = xij,i < y})7 ] = ]-7
, m marginal probability distributions for Markov chains (2) and by

(z,8,71) Z/I*Sdeﬂ(rxy)

their integral transforms. Set A\; = /taj (t)dt and A\; = X\; Y b £;(b).
b=1

0
We claim the following.
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(o)
Theorem 1. Let series f;(z) = Z b f;(b) and functions ¥; ¢(z, s, 7),
b=1

s>20,r=1,2,...,2m be analytic in an open disk |z| < 1+ ¢ for some
€ >0 and some j =1, ..., m. Further, let

Xj(Tl-i-...-i-TQm)—gj < 0.
Then the functions ¥;,(z,s,r),s >0,r=1,2,...,2m,and ¢ =0, 1, ...

are uniformly bounded w.r.t. z in an open disk |z] < 14+¢61,0<e1 <e,
and the sequence {Ex;;;i=0,1,...} is bounded.

Theorem 1 plays an elemental role in establishing a sufficient
condition for the existence of a stationary probability distribution for
the Markov chain (1) by iterative-dominating approach.
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