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Pavel Sergeevih Krasnoshekov (06.05.1935�26.02.2016) was born inKalah town, in Voronezhskiy region of Russia. In 1958, he graduatedfrom Faulty of Mehanis and Mathematis of Lomonosov MosowState University (MSU), and in 1961, he ompleted the aspirant (PhD)program at Steklov Institute of Mathematis. He got his andidate degreein 1964, and dotor of sienes in physis and mathematis degree in1973. In his dotoral thesis, he studied models of large-sale militaryon�its. In 1984, he was eleted as a orresponding member of Aademyof Sienes, and as a full member of Russian Aademy of Sienes (RAS)in 1992. Sine 1966, and until the end of his life, he has been workingin Computing Center of RAS, as a deputy diretor (1989�2004), andas a hief sienti� researher (2004�2016). Sine 1975, he has alsobeen a head of Operations Researh department at Lomonosov MSU.In 1981, P.S. Krasnoshekov was rewarded the State Premium for hiswork on theoretial foundations and pratial appliations of omputer-aided design. These results provided a possibility for the e�ient designand prodution of airplanes by Sukhoy plant sine 1980. In 1990th,P.S. Krasnoshekov has proposed and studied a model of olletivebehavior with appliation to eletions. Afterwards, he has been workingon foundations of theoretial physis in the general �eld theory. Thereare more than 10 dotors and 25 andidates of sienes among his pupils.His book �Priniples of Models' Design� (1983, o-authored by A. Petrov)remains a basi textbook for students at LomonosovMSU and at MosowInstitute of Physis and Tehnology.
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Optimization methods
Charged balls method for �nding theminimum distane between two plane onvexsmooth urves in three-dimensional spae∗M.E. AbbasovSt. Petersburg State University, 7/9 Universitetskaya nab.,St. Petersburg, 199034, RussiaWe onsider the problem





‖x− y‖ −→ min

x ∈ X

y ∈ YwhereX and Y are some plane onvex smooth urves in R
3. This problemappears in astronomy, omputer graphis and many other areas. Newreently desribed harged balls method [1℄, is proposed to solve theproblem. This method is based on mehani analogies [2℄. The approahof passing from the original stationary problem to a nonstationarymehanial system is quite ommon and was used by many researhersto desribe new e�etive optimization methods [3, 4℄.It is proposed to plae two oppositely harged balls onto the urvesin an arbitrary points. Balls will start to move towards the equilibriumposition, whih obviously oinides with the solution of our problem. By

∗This researh is supported by RFBR, researh projet No. 16-31-00056 and bySaint-Petersburg State University under Grant No 9.38.205.2014.



Optimization methods 13means of Newton's seond low equations of motion an be derived:
{
mη̈1(t) = F1(t) +N1(t) +R1(t)

mη̈2(t) = F2(t) +N2(t) +R2(t)Here m is the mass of the balls, F1, F2 are Coulomb fores, N1, N2are normal fores, R1, R2 are visous frition fores, needed to providethe tendeny of η1, η2 (oordinates of the �rst and seond ballsorrespondingly) to the equilibrium. Using numerial method for solvingthe obtained system of di�erential equations, we get the optimizationalgorithm for our initial problem.Numerial experiments and animations that illustrate the work ofthe algorithm are presented. Referenes1. Abbasov M.E. Charged balls method (in Russian). Preprint. http://www.apmath.spbu.ru/nsa/pdf/2015/Charged_balls.pdf// Seminar on Construtive Nonsmooth Analysis andNondi�erentiable Optimization (CNSA & NDO), 2015.2. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerial methods(in Russian). Mosow: Nauka, 1987.3. Polyak B.T. Introdution to Optimization. Optimization Software,1987.4. Vasiliev F.P. Optimization methods (in Russian). Mosow:Fatorial Press, 2002.



14 Optimization methodsPontryagin maximum priniple in optimalontrol problems with geometri mixedonstraints∗A.V. Arutyunov, D.Yu. Karamzin, and F.L. PereiraPeoples' Friendship University of Russia, Federal Researh Center�Informatis and Control� of the Russian Aademy of Sienes ,University of PortoConsider the optimal ontrol problem




Minimize ϕ(p) +

∫ t2

t1

f0(x, u, t)dtsubjet to ẋ = f(x, u, t), t ∈ T,
R(x, u, t) ∈ C,
p ∈ K.

(1)Here, T = [t1, t2] is the time interval (whih we assume �xed, and t2 >
t1), ẋ = dx

dt , x is state variable, whih takes values in the Eulidean spae
R

n, p = (x1, x2) is the so alled endpoint vetor, where x1 = x(t1), x2 =
x(t2), and u(·) taking values in R

m is the ontrol funtion. The vetor-funtion R : Rn×R
m×R

1 → R
r and the losed set C de�ne the geometrimixed onstraints. The ontrol funtion u(·) is onsidered measurableand essentially bounded, suh that, together with the ar x(·), satis�esthe mixed onstraints. The set K is losed and it de�nes the endpointonstraints whih have to be satis�ed as well. If the mixed onstraintsand the endpoint onstraints are satis�ed, then the ontrol proess (x, u)is alled admissible. The ontrol proess (x∗, u∗) is alled optimal, ifthe value of the minimizing funtional at any admissible proess is notless than its value at (x∗, u∗). For the lassi formulation of the ontrolproblem, see [1℄.The mappings in (1),

ϕ : R2n → R
1,

f : Rn × R
m × R

1 → R
n,

f0 : Rn × R
m × R

1 → R
1, and

R : Rn × R
m × R

1 → R
rsatisfy the following main hypothesis. The maps f, f0, R are ontinuouslydi�erentiable in (x, u) for a.a. t. On any bounded set, these maps and

∗This researh is supported by the Russian Foundation for Basi Researh, Grantnumbers 15-01-04601, 16-01-60005, and by FCT (Portugal) under Grant PEst-OE-EEI-UI0147-2014.



Optimization methods 15their partial derivatives in (x, u) are bounded, Lebesgue measurable in tfor all (x, u), and ontinuous in (x, u) uniformly in t. The salar funtion
ϕ is ontinuously di�erentiable.Everywhere in what follows, assume that problem (1) has a solution
(x∗, u∗).Consider the set-valued map

U(x, t) := {u ∈ R
m : R(x, u, t) ∈ C}.De�nition 1 A point u ∈ U(x, t) is said to be regular provided that

NC(R(x, u, t)) ∩ ker
∂R∗

∂u
(x, u, t) = {0}. (2)Here, the set NC(y) designates the limiting normal one in the senseof Mordukhovih, [2℄, and A∗ denotes the onjugate matrix or operator

A. The regularity of the point u means that the so alled RobinsonConstraint Quali�ation (RCQ) holds at u for the onstraint system
R(x, u, t) ∈ C, [3℄.The ondition (2) an be reformulated in the following way: thereexists a number ε > 0 suh that

∣∣∣∣y
∂R

∂u
(x, u, t)

∣∣∣∣ ≥ ε|y|, ∀ y ∈ NC(R(x, u, t)).The upper bound of all suh ε's is also known as modulus of surjetionof the onstraint system M : R(x, u, t) ∈ C. Let us denote the modulusof surjetion to an arbitrary given onstraint system V : F (z) ∈ S atpoint z, by surV (z).∗Then, the regularity of the point u ∈ U(x, t) is equivalent to therelation
surM(x, u, t) > 0.We denote by Ureg(x, t) the subset of all regular points of U(x, t). Thesubset of points for whih surM(x, u, t) ≥ ε is denoted by Uε

reg(x, t). Note
∗In the literature, the modulus of surjetion is introdued for set-valued maps

G : X → 2Y . If spaes X, and Y are �nite dimensional, then
surG(x|y) = inf{|x∗| : x∗ ∈ D∗G(x, y)(y∗), |y∗| = 1}.Here, D∗G(x, y) is the limiting oderivative of G at (x, y). By de�nition, surG(x|y) =

∞ when y /∈ G(x). If we set G(·) := R(x, ·, t)−C, then surM(x, u, t) = surG(x, u, t|0).



16 Optimization methodsthat this set may not be losed. It is lear that
Uε
reg(x, t) ⊆ Ureg(x, t) ⊆ U(x, t) ∀ ε > 0, and

Uα
reg(x, t) ⊆ Uβ

reg(x, t) for α > β > 0,and U0
reg(x, t) = U(x, t).The following onept orresponds to the lassi approah toregularity for mixed onstraints. (The so-alled strong regularity.)De�nition 2 The trajetory x∗(t) is said to be regular w.r.t. the mixedonstraints provided there is a number ε0 > 0 suh that

U(x∗(t), t) ⊆ Uε0
reg(x

∗(t), t), for a.a. t ∈ T.However in what follows a weaker regularity ondition will be used.De�nition 3 The trajetory x∗(·) is said to be weakly regular w.r.t. themixed onstraints provided there is a number ε0 > 0 suh that
u∗(t) ∈ Uε0

reg(x
∗(t), t) for a.a. t ∈ T.The regularity ondition imposed in De�nition 3 is weaker than theone from De�nition 2, as it holds only loally in a small tube about u∗(t),but not for all feasible points. The prie to pay for this sharp drop downfrom the global to the loal nature is the modi�edWeierstrass-Pontryaginmaximum ondition (6) that it appears in Theorem 1. See the disussionin [4℄ for more details and examples over the given onepts.Along with the regularity, we also need the notion of the proper point.Let us introdue it. Let δ be a positive number and u0 ∈ U(x, t). Alongthe onstraint system M de�ning the mixed onstraints in problem (1),onsider the assoiated onstraint system

Mδ,u0 :

{
R(x, u, t) ∈ C,
|u− u0| ≤ δ.De�nition 4 A point u0 ∈ U(x, t) is said to be proper (or, α, γ-proper)provided there exist α, γ > 0 suh that

surMδ,u0(x, u, t) ≥ γ ∀u ∈ U(x, t) : |u− u0| ≤ δ, ∀ δ ∈ (0, α).Results of [4℄ suggest a large sublass of the onstraint systems forwhih any regular point is proper. Suh a sublass inludes onvex sets,



Optimization methods 17semi-algebrai sets, or even more general than semi-algebrai type ofthe sets, the sets whih admit the so-alled Whitney strati�ation, i.e.,satisfying the Whitney ondition b).Let us impose the following ondition.Condition P) For all ε > 0, ∃ γ > 0 suh that, for any measurablebounded seletor u(t) of the map Uε
reg(t) := Uε

reg(x
∗(t), t), there exists ameasurable salar funtion α(t) s.t. u(t) is α(t), γ-proper for a.a. t.Condition P) may seem somewhat umbersome, but this onditionis satis�ed for the above mentioned sublass of the onstraint systems.This means that the result following below is valid under C onvex, orsemi-algebrai, or, even, when the set C admits Whitney strati�ation.Following [1℄, we introdue the Hamilton-Pontryagin funtion

H(x, u, t, ψ, λ) =
〈
ψ, f(x, u, t)

〉
− λf0(x, u, t).Under the weak regularity ondition the following theorem is true.Theorem 1 (Maximum Priniple) Let ε ∈ (0, ε0). Suppose that theproess (x∗, u∗) is optimal to problem (1), the ar x∗(t) is weakly regularw.r.t. the mixed onstraints and that Condition P) is satis�ed.Then, there exist a number λ ≥ 0, an absolutely ontinuous funtion

ψ : T → R
n, an essentially bounded measurable funtion η : T → R

r,and a onstant κ > 0, whih all depend on ε, suh that
η(t) ∈ convNC(R(t)) for a.a. t, (3)
ψ̇(t) = −∂H

∂x
(t) + η(t)

∂R

∂x
(t) for a.a. t, (4)

(ψ(t1),−ψ(t2)) ∈ λ
∂ϕ

∂p
(p∗) +NK(p∗), (5)

max
u∈clUε

reg(t)
H(u, t) = H(t) for a.a. t, (6)

∂H

∂u
(t)− η(t)

∂R

∂u
(t) = 0 for a.a. t, (7)

|η(t)| ≤ κ(λ+ |ψ(t)|) for a.a. t, (8)and λ+ |ψ(t)| > 0 ∀ t ∈ T. (9)Here, if some of the arguments of a funtion or of a set-valued mapare omitted, then it means that the extremal values x∗(t), u∗(t), ψ(t),and λ are in the plae of the omitted arguments.



18 Optimization methodsThis result overs the orresponding results from [5℄, where C wasonsidered merely onvex. Referenes1. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F.Mishhenko, Mathematial Theory of Optimal Proesses, Mosow,Nauka, 1983.2. B.S. Mordukhovih, Maximum priniple in problems of timeoptimal ontrol with nonsmooth onstraints, Appl. Math. Meh.,40, 1976, pp. 960�969.3. S.M. Robinson, Regularity and stability for onvex multivaluedfuntions, Math. Oper. Res., 1 (1976), pp. 130�143.4. A.V. Arutyunov, D.Yu. Karamzin, F.L. Pereira, G.N. Silva.Investigation of regularity onditions in optimal ontrol problemswith geometri mixed onstraints (2015) Optimization, 22 p.Artile in Press.5. A.V. Arutyunov, D.Yu. Karamzin, F.L. Pereira, MaximumPriniple in Problems with Mixed Constraints under WeakAssumptions of Regularity, J. of Optimization, Volume 59, Issue7, Otober 2010, pp. 1067�1083.The algorithm for auxiliary problem inSQP-methodV.A. BereznevA.A. Dorodnitsyn's Computing Center FRC IC of RAS, Mosow,RussiaCurrently methods of suessive quadrati programming (SQP) areamong the most e�etive optimization methods.Suppose that the funtion f : Rn → R and map F : Rn → Rm aretwie di�erentiable on all Rn. Consider the problem
f(x) → min, x ∈ X = {x ∈ Rn | F (x) ≤ 0}. (1)Let xk ∈ Rn � the urrent approximation of required stationarypoint x∗ of problem (1). The essene of the SQP-method lies in theapproximation of this problem near the xk of the quadrati programmingproblem types

min
x∈Xk

{
g(x) =

1

2
〈x,Hx〉+ 〈d, x〉 +D

}
, Xk = {x ∈ Rn | Ax ≤ b}, (2)



Optimization methods 19where the symmetri matrix H = f”(xk) is assumed positive de�nite, so
g(x) stritly onvex,D = f(xk)−〈f ′(xk), xk〉+f ′(xk), xk〉+ 1

2 〈xk, Hxk〉,
d = f ′(xk)−Hxk, A = f ′(xk) � matrix of dimension m×n, rankA = m,
m ≤ n, b = 〈f ′(xk), xk〉 − F (xk) ∈ Rm, Xk 6= ∅.The Lagrangian dual problem has the form

min
y≥0

{
ϕ(y) =

1

2
〈y,Qy〉+ 〈y, c〉+ C

}
, (3)where Q = AH−1A⊤, c = AH−1d−b, and onstant C = 1

2 〈d,H−1d〉+D.When you made assumptions about the matries H and A matrix Qpositive de�nite.First of all, note that the point y0 = −Q−1c is a point unonditionalminimum of the funtion ϕ(y). Thus, if y0 ≥ 0, then this point � thesolution of the problem (3). It is obvious also, that the solution of theproblem is the point y∗ = 0 if c ≥ 0. Suppose that the vetors y0 and contain negative omponents.It is known that the problem (3) an be redued to normal formby using regular transformation of oordinates. Let the matrix U de�nesuh the onversion, i.e. y = Uz and z = U−1y. In this ase transformthe problem (3) takes the form
min
z∈Z

{
F (z) =

1

2

m∑

i=1

z2i − 〈z, p〉+ C

}
, Z = {z ∈ Rm | Uz ≥ 0}, (4)where p = −U⊤c and the set Z is a pointed one in Rm as the rank ofthe matrix U is equal to m. Using, for example, the Lagrange's methodfull seletion of square, onsisting of (m−1)-th steps of the same type ofonversion matrix oe�ients Q, the quadrati form an be redued to aanonial form. Consequently, this proedure requires O(m3) elementaryoperations. For redution of quadrati form to normal form it remainsto multiply the reeived regular matrix on diagonal that does not a�etthe spei�ed omputational the omplexity of the proedure.Form problems of type (4) attrative for analysis beause thesurfaes of level of the objetive funtion of this problem are onentri

m-dimensional sphere entered at the point p. Consequently, the solution
z∗ of problem (4) is a projetion of the point p on a one Z. In otherwords, the problem (4) an equivalent problem

min
z∈Z

{
ϕ(z) =

1

2
‖z − p‖2

}
. (5)



20 Optimization methodsTo solve this problems we an use the proposed in [1℄ algorithm,whose omputational omplexity is O(m4). Hene the omputationalomplexity of the method of solution of the problem (2). Indeed, whenthe redution of the original problem to the dual problem (3) the mosttime onsuming operation is the inverse of the matrix H , whih requires
O(n3) elementary operations. Redution of quadrati form 〈y,Qy〉 tonormal form assoiated with the implementation of O(m3) operations.Finally, the solution of the problem (5), as already noted, provides for
O(m4) operations. Thus, to solve the problem (2) requires O(n3 +m4)elementary operations. If z∗ is the solution of the problem (5), thesolution of the original problem (2) is a formula x∗ = H−1(d−A⊤Uz∗).As shown in [1℄ the proposed algorithm is appliable to problem (2),the matrix H whih is nonnegative determined. Let f(x) bounded frombelow on X . Then the solution of the problem exists. Denote by X∗ theset of its solutions.Using the nonsingular transformation y = V −1x will give quadratiform to anonial form. Then the problem (2) takes the form

min
y∈Y

{
ψ(y) =

1

2
〈y,Λy〉 − 〈q, y〉

}
, (6)where Λ � diagonal matrix of size n with elements λi, i = 1, n on themain diagonal, q = dV ⊤, Y = {y ∈ Rn | Gy = b}, G = AV . We assumethat the set Y is not empty and is bounded, i.e. there exists a onstant

D that ‖y‖ ≤ D for any y ∈ Y . Denote by Y ∗ the set of solutions ofthe problem (6) and by ψ∗ the optimal value of the objetive funtionof this problem.Suppose the �rst k numbers λi, i = 1, k is positive and λk+1, . . . , λnare zero. Let λ∗ = min
i=1,k

λi > 0. Put Λε = Λ+ εI, where I is the identitymatrix of size n, and ε : 0 < ε < λ∗, and onsider the problem
min
y∈Y

{
ψε(y) =

1

2
〈y,Λεy〉 − 〈q, y〉

}
, (7)It is obvious that the problem (7) is a quadrati programmingproblem with positive de�nite quadrati form, whih we will use thealgorithm desribed above.Let y∗ε - solution of problem (7). In virtue of strong onvexity of ψε(y)is the solution unique. As shown in [1℄ for any µ > 0 there is suh ε > 0that ψ(y∗ε )− ψ∗ < µ, where y∗ε � the solution of problem (7).



Optimization methods 21Thus, it follows from the theorem of weak onvergene of thealgorithm when ε→ 0. In other words, it is possible to obtain a solutionwith any given auray in funtionality, ost deision O(n3 + m4)operations. Referenes1. Bereznev V.A. A polynomial algorithm for the quadrati program-ming problem // Russian J. of Numerial Anal. and Math. Model-ling, 2014, V.29, No 3, P.139-144.Newton-type method for variationalequilibrium problem∗A.N. Daryina and A.F. IzmailovDorodniyn Computing Centre of RAS, Mosow State University,Mosow, RussiaWe onsider the Generalized Nash Equilibrium Problem (GNEP)with two players and shared onstraints:
f1(x

1, x2) → min
x1
,

g(x1, x2) ≤ 0,

f2(x
1, x2) → min

x2
,

g(x1, x2) ≤ 0,
(1)where the objetive funtions f1 : IRn1×IRn2 → IR, f2 : IRn1 ×IRn2 → IRand the mapping g : IRn1 × IRn2 → IRm are smooth.A point (x̄1, x̄2) ∈ IRn1 × IRn2 is alled generalized Nash equilibriumif x̄1 is a solution of the �rst problem in (1) with x2 = x̄2, and x̄2 is asolution of the seond problem in (1) with x1 = x̄1.GNEPs arise in various applied and theoretial areas: eonomis,engineering, omputer sienes, operations researh, et. This problemlass has been attrating reently muh attention, in partiular beauseit turned out that the approahes and methods of modern variationalanalysis an be suessfully applied in this ontext.For eah optimization problem in (1), de�ne its Lagrangian Lj :

IRn1 × IRn2 × IRm → IR,
Lj(x

1, x2, µj) = fj(x
1, x2) + 〈µj , g(x1, x2)〉, j = 1, 2,

∗This researh is supported in part by the Russian Foundation for Basi ResearhGrant 14-01-00113, by the Russian Siene Foundation Grant 15-11-10021, by thegrant of the Russian Federation President for the state support of leading sienti�shools NSh-8215.2016.1, by CNPq Grant PVE 401119/2014-9, and by VolkswagenFoundation.



22 Optimization methodsand onsider the onatenated Karush�Kuhn�Takker optimality ondi-tions:
∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0,

µ1 ≥ 0, 〈µ1, g(x1, x2)〉 = 0, µ2 ≥ 0, 〈µ2, g(x1, x2)〉 = 0,

g(x1, x2) ≤ 0.

(2)A generalized Nash equilibrium (x̄1, x̄2) is alled variational equilib-rium if the orresponding Lagrange multipliers of two players oinide,i.e., (x̄1, x̄2) satis�es (2) with µ̄1 = µ̄2 = µ̄ ∈ IRm. Therefore, variationalequilibria are haraterized by system (2), where µ1 = µ2 = µ:
∂L1

∂x1
(x1, x2, µ) = 0,

∂L2

∂x2
(x1, x2, µ) = 0,

µ ≥ 0, g(x1, x2) ≤ 0, 〈µ, g(x1, x2)〉 = 0.

(3)Variational equilibria are very important from pratial point of view.For example, in various eonomis appliations, Lagrange multipliers µ̄1and µ̄2 an be interpreted as pries, and keeping them the same for bothplayers is neessary for a solution to make pratial sense.Systems (2) and (3) an be both interpreted as mixed omplemen-tarity problems. However, unlike for (2), solutions of system (3) annaturally be isolated, and hene, an be found by methods developed for�nding isolated solutions of mixed omplementarity problems; see [1�3℄and referenes therein.In this work, we apply the algorithm from [2, 3℄ for �nding variationalequilibria. We establish global onvergene properties of the algorithm,and provide the assumptions guaranteeing superlinear onvergene rate.Referenes1. Billups S.C. A homothopy-based algorithm for mixed omplemen-tarity problems // SIAM J. Optim. 2002. V. 12, � 3. P. 583�605.2. Daryina A.N., Izmailov A.F., Solodov M.V. A lass of ative-setNewton methods for mixed omplementarity problem // SIAM J.Optim. 2004. V. 15, � 2. P. 409�429.3. Daryina A.N., Izmailov A.F., Solodov M.V. Numerial results fora globalized ative-set Newton method for mixed omplementarityproblems // Comp. Appl. Math. 2005. V. 24. P. 293�316.



Optimization methods 23Study of a one-dimensional optimal ontrolproblem with a purely state-dependent ostA.V. Dmitruk and A.K. VdovinaLomonosov Mosow State University, Mosow, Russian FederationWe onsider the following optimal ontrol problem on a �xed timeinterval [0, T ]:
J(x(t)) =

∫ T

0

e−rt · Φ(x(t)) dt → max, (1)
{
ẋ = f(x) + u g(x), |u| ≤ 1,

x(0) = x0, x(T ) = xT ,
(2)where both the state x(·) and ontrol u(·) variables are salar funtions.We assume that the funtion Φ is ontinuous and unimodular. Thelatter means that it has the only maximum point x∗, and moreover,it inreases for x < x∗ and dereases for x > x∗. The funtions f and

g are di�erentiable, g(x) > 0. (Note that here we do not assume thedi�erentiability of Φ, neither the monotoniity of f, g.) The admissibleontrol set is [−1, 1]. (The ase of arbitrary ontrol interval a ≤ u ≤ ban be redued to this one by a simple resaling.) The time interval
[0, T ] is supposed to be big enough.We also assume that the Cauhy problem ẋ = f(x) + ug(x), x(0) =
x0 has a solution on the whole interval [0, T ] for any admissible u(t),and that some of these solutions satisfy the required terminal ondition
x(T ) = xT .Sine the problem is linear in the ontrol and the admissible ontrolset is onvex and ompat, the lassial Filippov theorem [1,2℄ guaranteesthat an optimal trajetory exists. Our aim is to �nd it.It follows from the properties of Φ that one should keep as loseas possible to the point x∗, preferably just stay at x∗. Therefore, theharater of optimal solution depends on whether the ontrol systemadmits staying at the point x∗ on some time interval, or not. If it does,we have ẋ = 0, then u = −f(x∗)/g(x∗), whih means that the solutiondepends on whether u∗ = −f(x∗)/g(x∗) is an admissible ontrol valueor not.The problem (1)�(2) appears in a large variety of appliations; forexample, some models of mathematial eonomis an be redued to



24 Optimization methodsit Usually, the only onsidered ase is when u∗ = −f(x∗)/g(x∗) isadmissible, even |f(x∗)/g(x∗)| < 1, therefore we all this ase standard.In a number of works (see e.g. [3 � 5℄, to mention just a few)this problem is solved by using the Pontryagin maximum priniple(PMP). However, it an be noted that the usage of suh an advanedtheoretial result as PMP is exessive in this standard ase, beause thesolution an be easily found on the base of well known fats of lassialanalysis by using the onept of turnpike and the most rapid approahpath (MRAP). The last onept, in turn, is based on the Thyaplyginomparison theorem for solutions of one-dimensional ODEs [6℄. Someauthors use also the Green theorem (e.g., [7, 8℄), but this also seemsredundant. Below we provide a rigorous justi�ation of these arguments.Moving on, we onsider a modi�ation of problem (1)�(2), when the�nal state x(T ) is free and the ost involves the so-alled salvage term.In this ase we give a omplete solution of the problem.All the above is related to the standard ase. However, the mostinteresting ase is the non-standard one, when |f(x∗)/g(x∗)| > 1. Asfar as we know, this ase was not yet studied, though it ould appearin di�erent models as well. Here we �nd an optimal trajetory by usinglassial analysis, and then show that PMP gives the same result. Thespei� ase of |f(x∗)/g(x∗)| = 1 is degenerate and not that interesting.Thus, in some ases, problem (1)�(2) and its modi�ations an besolved without using of PMP. Let us emphasize that this is possible onlywhen the state variable is one-dimensional, beause in higher dimensionsthere are no omparison theorem for solutions of ODEs.Referenes1. Filippov A.F. On Some Questions of the Optimal RegulatingTheory // Vestnik Mosov. Univ, Ser. Math-Meh.,� 2. P. 25�32.2. Cesari L. Optimization Theory and Appliations, Springer, 1983.3. Ashmanov S.A. Introdution to Mathematial Eonomis.Mosow: Mosow State University, 1980 (in Russian).4. Sethi S.P., Thompson G.L. Optimal Control Theory. Springer.2005.5. Geering H.P. Optimal Control with Engineering Appliations.Springer, 2007.6. Thaplygin S.A. A new method for approximate integration ofdi�erential equations, in "S.A. Thaplygin. Colleted works".Mosow: Nauka, 1976 (in Russian).



Optimization methods 257. Clark C.W., De Pree J.D. A Simple Linear Model for the OptimalExploration of Renewable Resourses // Applied Mathematis andOptimization. V. 5, 1979/ P. 181�196.Restoring the parameters of onjugatedpairs of linear algebrai equation systems bya set solutionV.I. Erokhin and A.S. KrasnikovHigher Shool of Tehnology and Energetis, St. Petersburg, Russia,Russian State Soial University, Mosow, RussiaThe report observes the theorem of reovering the parameters of aonjugated pair of linear algebrai equation systems by a set solutionusing an interval riterion. Tasks in similar statements are onsidered inartiles [5℄, [6℄.Theorem. The A ∈ R
m×n family of matries and the b ∈ R

m,
c ∈ R

n, families of vetors that guarantee that the set x̄ ∈ R
n and

ū ∈ R
m vetors belong to the

{
Ax = b,
u⊤A = c⊤,

(1)set of solutions of a onjugated pair of systems of linear algebraiequations, and at the same time, ‖A‖ ≤ α, ‖b‖ ≤ β, ‖c‖ ≤ γ, where
α > 0, β > 0, γ > 0 an be onstruted using

b = λ
ū

ū⊤ū
+ λ

(
Im − ūū⊤

ū⊤ū

)
∆b, (2)

c = λ
x̄

x̄⊤x̄
+ λ

(
In − x̄x̄⊤

x̄⊤x̄

)
∆c, (3)

A =
1

λ
bc⊤, (4)formulas, where ‖ · ‖ stands for, depending on the ontent, the Eulideanmatrix or vetor norm, the salar parameter λ is alulated using the

λ ≤ λ̄ = min

(
α

ᾱ
,
β

β̄
,
γ

γ̄

)
, (5)rule,

β̄ =

√
1

ū⊤ū
+∆b⊤

(
Im − ūū⊤

ū⊤ū

)
∆b, (6)
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γ̄ =

√
1

x̄⊤x̄
+∆c⊤

(
In − x̄x̄⊤

x̄⊤x̄

)
∆c, (7)

ᾱ = β̄ · γ̄, (8)
∆b ∈ R

m, ∆c ∈ R
n are random vetors, Im, In are singular matries ofsize m and n, aordingly.At the same time

‖A‖ = λ · ᾱ, (9)
‖b‖ = λ · β̄, (10)
‖c‖ = λ · γ̄. (11)On the basis of the theorem 1 it is possible to develop methods ofthe solution of the tasks desribed in artiles [1℄�[4℄.The report ends with a numerial experiment with a model example.Initial parameters of the task (1):

x =




1
3
0
1
1



, u =




2
1
1
10


 .

α = 2, β = 1, γ = 0.5.We will set parameters ∆b, ∆c as follows
∆b =




0.850679
0.558565
0.901774
0.419518


 , ∆c =




0.358128
0.488988
0.255962
0.929169
0.466757



.Aording to (5)�(8)

β̄ = 1.234372, γ̄ = 0.856068, ᾱ = 1.056707,

λ = 0.584066.



Optimization methods 27Further, from the (2)�(4) we obtain
A =




0.073855 −0.028283 0.109244 0.317574 0.120217
0.050392 −0.019298 0.074539 0.216686 0.082026
0.085080 −0.032581 0.125848 0.365843 0.138489

−0.018211 0.006974 −0.026938 −0.078308 −0.029644


 ,

b =




0.426799
0.291212
0.491668

−0.105241


 , c =




0.101069
−0.038704
0.149499
0.434594
0.164515



.Chek shows what aording to (9)�(11) is arried out

‖A‖ = λ · ᾱ = 0.617186 < α = 2,

‖b‖ = λ · β̄ = 0.720954 < β = 1,

‖c‖ = λ · γ̄ = 0.5 = γ.The equations (1) are solvable.Referenes1. Erokhin V.I. Matrix orretion of a dual pair of improperlinear programming problems // Computational Mathematis andMathematial Physis. 2007. V. 47. � 4. P. 564-578.2. Erokhin V.I., Krasnikov A.S., Khvostov M.N. Matrix orretionsminimal with respet to the eulidean norm for linear programmingproblems // Automation and Remote Control. 2012. �². 73. � 2.P 219-231.3. Erokhin V.I., Krasnikov A.S. Matrix orretion of a dual pairof improper linear programming problems with a blok struture// Computational Mathematis and Mathematial Physis. 2008.�². 48. � 1. P 76-84.4. Erokhin V.I., Laptev A.Yu., Lisitsyn N.V. Reoniliation ofmaterial balane of a large petroleum re�nery in onditions ofinomplete data // Journal of Computer and Systems SienesInternational. 2010. V. 49. � 2. P. 295-305.5. Gorelik V.A., Erokhin V.I., Pehenkin R.V. Minimax matrixorretion of inonsistent systems of linear algebrai equations withblok matries of oe�ients // Journal of Computer and SystemsSienes International. 2006. V. 45. � 5. P. 727-737.



28 Optimization methods6. Volkov V.V., Erokhin V.I. Tikhonov solutions of approximatelygiven systems of linear algebrai equations under �niteperturbations of their matries // Computational Mathematisand Mathematial Physis. 2010. V. 50. � 4. P. 589�605.Methods and software infrastruture for highperformane optimization∗Yu.G. Evtushenko and M.A. PosypkinDorodniyn Computing Centre, FRC CSC RAS, Mosow, RussiaWe onsider the following optimization problem
f(x) → min, s.t. g(x) ≤ 0, (1)where f(·) : Rn → R and g(·) : Rn → R

m are ontinuous mappings.Finding the exat minimum f∗ is usually impossible. Thus the goal isto �nd ε, δ-solution de�ned as follows: x ∈ R
n, gi(x) ≤ δ, i = 1, . . . ,m,

f(x) ≤ f∗ + ε.Te Non-uniform Covering Method proposed in [1℄ is able to �nd ε, δ-solution in a �nite number of steps. For realisti problems the numberof steps an be quite large. Numerous tehniques to redue the numberof steps have been proposed so far [2,3℄.To support a variety of overing proedures we developed an objet-oriented �exible and extensible software infrastruture. In this frameworkone an easily implement new methods to onstrut overages andombine them.The ore lass of this software environment is Cover.Covers are onstruted by over fatories inherited from the abstratlassCoverFatory. At the moment fatories relying on omparing lower andupper bounds on an objetive funtion, �rst and seond order optimalityonditions are implemented.Though advaned overing tehniques signi�antly inreases theperformane of the method for many pratial problems the amount ofrequired resoures is beyond the apaity of a single CPU omputer. Forsuh problems the use of parallel and distributed omputing is inevitable.We reated a software infrastruture that supports parallel(distributed memory) tree searh sheme. The approah implementedby our tool separates the problem dependent part from the parallel
∗This researh is supported by RFBR projet 14-07-00805 and by Ministry ofSiene and Eduation of Republi of Kazakhstan, projet 0115PK00554.



Optimization methods 29implementation and from the logi of parallelization. The main issuein parallel tree searh is load balaning. Sine the struture of the treeis not known in advane the stati distribution is usually not e�ient.To overome this problem parallel solvers use dynami load balaning todistribute the omputational load among proessors.In our tool speial omponents alled shedulers are used formanaging parallel resolution proess. A sheduler interat via a stritlyde�ned interfae with a solver and a parallel platform. It ommuniateswith the parallel platform by means of speial ommands suh as:
• send N subproblems to the proess P;
• send inumbent to the proess P;
• send ontrol ommand to the proess P;
• reieve information (subproblems, inumbent or ontrol ommand)from the proess P.It is worth noting that this set of ommands is problem-independent. And thus it is possible to separate the logi of the parallelproessing management and the problem spei� implementation ofthose ommands. Suh separation is important for several reasons.First, it saves e�orts when implementing new problem beause only theproblem-spei� part has to be implemented and the sheduler is reused.Seond, ommon part an be a subjet for a separate study. For instaneit is possible to ompare di�erent load balaning strategies on a simulatoror hek the orretness of the parallel algorithm, e.g. identify possibledeadloks.The simulator transparently substitutes the real parallel system andthe real solver. Thus we an onveniently evaluate the performane ofsheduling algorithms inorporated in our tool. Besides the simulator wealso developed a graphial front-end that visualizes the proessors loadand ommuniation among proessors.Referenes1. Evtushenko Y. G. Numerial methods for �nding globalextrema (ase of a non-uniform mesh) //USSR ComputationalMathematis and Mathematial Physis. 1971. V. 11. No. 6. P. 38�54.



30 Optimization methods2. Evtushenko Y., Posypkin M. A deterministi approah to globalbox-onstrained optimization //Optimization Letters. 2013. V. 7.No. 4. P. 819�829.3. Evtushenko Y. G., Posypkin M. A. Versions of the methodof nonuniform overings for global optimization of mixedinteger nonlinear problems // Doklady Mathematis. MAIKNauka/Interperiodia, 2011. V. 83. No. 2. P. 268�271.The Minkowski di�erene of sets with theonstraint strutureZ.R. GabidullinaKazan Federal University, Kazan, RussiaThe analytial expression of the Minkowski di�erene of sets has itsown independent signi�ane in many areas of mathematial sienes.In [1℄�[4℄, we used the Minkowski di�erene for investigation of the setsseparation problems. In this thesis, we shall demonstrate that the Min-kowski di�erene is a useful tool for solving of the variational inequalitiesinteronneted with the linear separation problems.In a wide range of appliations of variational inequalities, the set Φis determined by a system of inequalities:
Φ = {x ∈ X : fi(x) ≤ bi, i ∈ I}, I = {1, 2, · · · ,m}, (1)where fi(x), i ∈ I are arbitrary real-saled quasi-onvex funtions whihare de�ned on a onvex set X ⊆ R

n.The basi impediment to making use of operation of Minkowskidifferene are problems related to its implementation for di�erentformulations of sets.Let us reall that, in [2℄, we proved that the set Φ−Ψ oinides withthe onvex hull of the vetors zk −pl, k ∈ K, l ∈ L if Φ = co{zk}k∈K ,
Ψ = co{pl}l∈L, K = {1, 2, · · · , r}, L = {1, 2, · · · , s}.Next, we presented in [4℄ the analytial expression of the Minkowskidi�erene of two sets Φ and Ψ, when Φ is given by (1), and Ψ isan arbitrarily de�ned set.Let be given an arbitrary set Ψ ⊆ R

n, the set Φ be de�ned by (1),
X = R

n, then Φ−Ψ = Φ1, where
Φ1 = {x ∈ R

n : fi(x+ y) ≤ bi, i ∈ I, y ∈ Ψ},

I = {1, 2, · · · ,m}, Φ−Ψ = {z ∈ R
n : z = x− y, x ∈ Φ, y ∈ Ψ}.



Optimization methods 31From above, we observe that it really did not matter how the set Ψwas de�ned analytially or by some other way. For example, Ψ may bede�ned in a similar way as the set Φ:
Ψ := {x ∈ R

n : gj(x) ≤ dj , j ∈ J}, J = {1, 2, · · · , k}.It is quite lear that if the set Φ is presribed by strit onstraints, then
Φ1 should be de�ned by the system of the strit inequalities, too.In partiular, the set Ψ an ontain a single point. For this ase, weonsider below some examples.1. Let Φ 6= ∅ be de�ned by (1), p ∈ R

n,
Φ1 = {x ∈ R

n : fi(x + p) ≤ bi, i ∈ I}, I = {1, 2, · · · ,m},then Φ− p = Φ1, where Φ− p = {z ∈ R
n : z = x− p, x ∈ Φ}.2. If p ∈ R

n, i ∈ I, I = {1, 2, · · · ,m}, Φ 6= ∅,

Φ = {x ∈ R
n : 〈ai, x〉 ≤ bi, ai ∈ R

n, bi ∈ R
1}, (2)then Φ− p = {x ∈ R

n : 〈ai, x〉 ≤ b̃i, b̃i = bi − 〈ai, p〉, i ∈ I}.3. If Φ = {x ∈ R
n : l ≤ x ≤ u, l, u ∈ R

n}, Φ 6= ∅, then
Φ− p = {x ∈ R

n : l − p ≤ x ≤ u− p}.4. If Φ = {x ∈ R
n : ‖x− o‖2 ≤ r2, o ∈ R

n, r ∈ R
1
+}, then

Φ− p = {x ∈ R
n : ‖x− ō‖2 ≤ r2, ō = o− p}.5. If p = (p1, · · · , pn),Φ = R

n
+ = {x = (x1, · · · , xn) : xj ≥ 0, j = 1, n},then

Φ− p = {x = (x1, · · · , xn) : xj ≥ −pj , j = 1, n}.Let the set Φ be given by (2) and Ψ be desribed as follows
Ψ = {y ∈ R

n : 〈cj , y〉 ≤ dj , cj ∈ R
n, dj ∈ R

1}, J = {1, 2, · · · , k},then
Φ−Ψ = {x ∈ R

n : 〈ai, x〉+ 〈ai, y〉 ≤ bi, y ∈ Ψ}.Let be given the arbitrary nonempty sets Φ, Ψ ⊂ R
n. If thevariational inequality onsists in determining a vetor c ∈ R

n\{0} suhthat
〈c, x− y − c〉 ≥ 0 x ∈ Φ, y ∈ Ψ, (3)



32 Optimization methodsthen (3) an be solved by multiple sequential projetions to eah region.Instead of this method for solving of (3), we an make use the singleprojetion of the origin of R2n onto the Minkowski di�erene of the sets
Φ and Ψ.Naturally, if the sets Φ and Ψ are nonempty onvex and losed, andat least one of them is bounded, then Φ−Ψ is a onvex and losed set.Consequently, the operation of projetion onto Φ−Ψ is well de�ned.Let PΦ−Ψ(0) stand for the projetion of the origin onto Φ − Ψ. If
PΦ−Ψ(0) 6= 0, then it obviously holds that 0 /∈ Φ−Ψ. Therefore, thereexist the points x̄ ∈ Φ and ȳ ∈ Ψ suh that x̄− ȳ = PΦ−Ψ(0), x̄ 6= ȳ.These losest points of Φ and Ψ an be found by solving of the followingsystem:

〈c, x− x̄〉 ≥ 0, x ∈ Φ, (4)
〈c, ȳ − y〉 ≥ 0, y ∈ Ψ, (5)where c = PΦ−Ψ(0).Under assumption that both sets Φ and Ψ are bounded, theontinuous funtion 〈c, x〉 attains its maximum and minimum valueson the ompat sets Φ and Ψ. As a onsequene, the points x̄ and

ȳ satisfying to (4)�(5) an be found by solving the following problems,respetively:
min
x∈Φ

〈c, x〉,

max
y∈Ψ

〈c, y〉.Let us notie that the vetor (x̄, ȳ), x̄ ∈ Φ, ȳ ∈ Ψ satisfying to(4)�(5) is the solution of the following problem:
min

x∈Φ, y∈Ψ
‖x− y‖2.So, the problem of determining the distane between the sets Φ and Ψan be solved by redution to the next problem:

min
z∈Φ−Ψ

‖z‖2.Consequently, the distane between the sets Φ and Ψ is equal to
‖PΦ−Ψ(0)‖. Referenes1. Gabidullina Z.R. A Theorem on Separability of a ConvexPolyhedron from Zero point of the Spae and Its Appliations in



Optimization methods 33Optimization // Izvestiya VUZ. Matematika. 2006. � 12. P. 21�26. (Engl.trasl. Russian Mathematis (Iz.VUZ). 2006. V. 50, � 12.P. 18�23.2. Gabidullina Z.R. A Theorem on Strit Separability of ConvexPolyhedra and Its Appliations in Optimization // Journal ofOptimization Theory and Appliations. 2011. V. 148, � 3. P. 550�5703. Gabidullina Z.R. A Linear Separability Criterion for Setsof Eulidean Spae // Journal of Optimization Theory andAppliations. 2013. V. 158, � 1. P. 145�1714. Gabidullina Z.R. Neessary and Su�ient Conditionsfor Emptiness of the Cones of Generalized SupportVetors // Optimization Letters. 2015. V. 9, � 4.P.693-729, Springer Berlin Heidelberg, Available athttp://link.springer.om/artile/10.1007/s11590-014-0771-5Properties of the shortest urve in aompound domain∗A.V. Gorbaheva* and D.Yu. Karamzin*** Peoples' Friendship University of Russia, Mosow, Russia** Federal Researh Center �Computer Siene and Control� of theRussian Aademy of Sienes, Mosow, RussiaA losed state domain given by onstraints of the form g1(x) = 0 and
g2(x) ≤ 0 is onsidered, where x ∈ Rn and g1 and g2 are given funtionsranging in Rk1 and Rk2 , respetively. Suh a state domain will be alled aompound domain in what follows. In addition, throughout the followingwe assume that the vetors ∂gi

1

∂x (x), i = 1, ..., k1, and ∂gj
2

∂x (x), j ∈ J(x),are linearly independent for every x. Here J(x) := {j : gj2(x) = 0}.Some properties of the shortest urve in a ompound domain arestudied. The equation of the shortest urve is derived. It is important tonote the following. It might seem that the equation of the shortest urvein the presene of inequalities is a trivial onsequene of the optimalitypriniple. Indeed, any part of the shortest urve is a shortest urve itself;then, by onsidering its separate parts lying on the boundary of the
∗This researh is supported by the Russian Foundation for Basi Researh(projets 16-01-00283, 16-31-60005), and by the grant of the President of the RussianFederation MD-4639.2016.1.



34 Optimization methodsdomain x : g2(x) ≤ 0 and inside it (assume that k2 = 1), we obtainthe desired result. This method applies if these parts lie entirely on theboundary or inside the domain. However, suh a part of the shortesturve lying entirely on the domain boundary does not neessarily exist,while the set of points of exit of the shortest urve to the boundaryan be, for example, a Cantor set of positive measure. Let us give anexample.Let C ⊂ [0, 1] be a Cantor set of positive measure. Sine C is losed,it follows from the Whitney theorem that there exists a nonpositivefuntion f : [0, 1] → R suh that f−1({0}) = C. Take n = 2 and g2(x) =
f(x1) − x2 and assume that equality onstraints are absent. Obviously,the shortest urve joining the points (0, 0) and (1, 0) is de�ned by theformulas x1(t) = t, x2(t) = 0, t ∈ [0, 1]. One an readily see that the set
C×{0} lies on the boundary of the domain, and the set ([0, 1]\C)×{0}lies in its interior.Note also that we should study the lass of funtions to whih theshortest urve belongs. Obviously, in the presene of inequalities it doesnot belong to the lass C2([0, 1]), in ontrast to the geodesis. One anreadily onstrut a related example.Consider the ompound domain

M := {x ∈ Rn : g1(x) = 0, g2(x) ≤ 0},and let A and B be two given points in M , A 6= B. Consider a smoothurve x(t) : [0, 1] →M lying entirely in M and joining the points A and
B; i.e. x(0) = A and x(1) = B. (We assume that M is a onneteddomain; then, by virtue of the above-imposed regularity onditions,there always exists suh a urve.) The shortest urve in M is de�nedas a ontinuously di�erentiable regular urve x∗(t) with the naturalparametrization that has the minimum length of all smooth urves x(t)that lie in M and onnet the points A and B.Consider the ontrol problem

1

2

∫ 1

0

|u(t)|2dt→ min, ẋ = u,

g1(x) = 0, g2(x) ≤ 0, (1)

u ∈ Rn, x(0) = A, x(1) = B.Lemma 1 There exists a shortest urve x∗(t) onneting the points
A and B. Every shortest urve is a solution of problem (1). The onverseis also true: eah solution of problem (1) is a shortest urve.



Optimization methods 35Lemma 2 The shortest urve x∗(t) is a funtion of the lass
W2,∞([0, 1]). In the ase without inequality onstraints, it belongs tothe lass C2([0, 1]).Lemma 3 The shortest urve x∗(t) satis�es the equation

ẍ = −g′∗x (x)P ∗(x)[P (x)g′x(x)g
′∗
x (x)P ∗(x)]−1P (x)g′′xx[ẋ, ẋ] (2)almost everywhere on [0, 1℄.Above, where P(x) is the (k1 + k2)× (k1 + |J(x)|) matrix that takeseah vetor y = (y1, y2, ..., yk1 , yk1+1, yk1+2, ..., yk1+k2) to the vetor

ỹ = (y1, y2, ..., yk1 , yk1+j1 , yk1+j2 , ..., yk1+jk), where j1, j2, ..., jk are theindies forming the set J(x) and g = (g1, g2).Remark 1Along with Eq. (2), we have the equation of the shortest urve in thesimpler geometri form
ẍ ∈ NM (x).Remark 2If equality state onstraints are absent, then the problem on theshortest urve for a omplex- shaped domain is also referred to asthe obstale bypass problem [1, p. 66℄. The possibility to derive theequation of the shortest urve from the Pontryagin maximum priniplewas pointed out by Gamkrelidze [2; 3, p. 347℄.The proofs of these results an be found in [4℄. The proofs use thetheory developed in [5℄. Referenes1. Arnol'd, V.I. Teoriya katastrof (Catastrophe Theory). Mosow:Nauka, 1990.2. Gamkrelidze R.V. Time-Optimal Proesses with Bounded StateCoordinates // Dokl. Akad. Nauk SSSR. 1959. V. 125, N. 3. P. 475�478.3. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., MishhenkoE.F. Matematiheskaya teoriya optimal'nykh protsessov(Mathematial Theory of Optimal Proesses). Mosow: Nauka,1983.4. Davydova A.V., Karamzin D.Yu. On some properties of theshortest urve in a ompound domain // Di�erential Equations.2015. V. 51, N. 12. P. 1626�1636.5. Arutyunov A.V., Karamzin D.Yu. Non-Degenerate NeessaryOptimality Conditions for the Optimal Control Problem with



36 Optimization methodsEquality-Type State Constraints // J. of Global Optimization.2015.Frational programming via D.C.optimization∗T.V. Gruzdeva and A.S. StrekalovskyMatrosov Institute for System Dynamis and Control Theory of SBRAS, Irkutsk, RussiaThe paper addresses the development of e�ient methods forfrational programming problems [1℄ as follows
(P) f(x) :=

m∑

i=1

ψi(x)

φi(x)
↓ min

x
, x ∈ S,where φi(x) > 0, ψi(x) > 0, i = 1, . . . ,m, ∀x ∈ S.This is a nononvex problem with multiple loal extremum whihbelongs to a lass of global optimization.Together with problem (P) we will also onsider the followingparametri optimization problem

(Pα) Φα(x)
△
= Φ(x, α) :=

m∑

i=1

[ψi(x)− αiφi(x)] ↓ min
x
, x ∈ S,where α = (α1, . . . , αm)⊤ ∈ IRm is the vetorial parameter.Let us introdue then the optimal value funtion V(α) ofProblem (Pα) as follows

V(α) := inf
x
{Φα(x) | x ∈ S}.In addition, suppose that the following assumptions are ful�lled:

(H1)

(a) V(α) > −∞ ∀α ∈ K,where K is a onvex set from IRm;

(b) ∀α ∈ K ⊂ IRm there exists a solution z = z(α) toProblem (Pα), i.e. V(α) = m∑
i=1

[ψi(z)− αiφi(z)].

∗This researh is supported by the Russian Siene Foundation (grant 15-11-20015).



Optimization methods 37Then it takes plae the redution (equivalene) theorem for the frati-onal programming problem with d.. funtions and the solution of theequation V(α) = 0 with the vetor variable α = (α1, . . . , αm)T satisfyingthe following nonnegativity assumption
(H(α)) ψi(x) − αiφi(x) ≥ 0 ∀x ∈ S, i = 1, . . . ,m.Theorem. Suppose that in Problem (P) the assumptions (H1) areful�lled. In addition, let there exist a vetor

α0 = (α01, . . . , α0m)⊤ ∈ K ⊂ IRmfor whih the assumption (H(α0)) is satis�ed.Besides, suppose that in Problem (Pα0) the following equality holds
V(α0)

△
= min

x

{
m∑

i=1

[ψi(x)− α0iφi(x)] | x ∈ S

}
= 0.Then any solution z = z(α0) to Problem (Pα0) turns out to be asolution to Problem (P), so that z ∈ Sol(Pα0) ⊂ Sol(P).This theorem opens the door to a justi�ed use of the Dinkelbah'sapproah for solving frational programming problems with the goalfuntion presented by a sum of frations all given by d.. funtions.Therefore, instead of solving Problem (P) we propose to ombine asolving Problem (Pα) with a searh with respet to parameter (α ∈ IRm

+ )in order to �nd a vetor (α0 ∈ IRm
+ ) suh that

V(α0) = V(Pα0) = 0.In this situation for every (α ∈ IRm
+ ) we must be able to �nd a globalsolution to Problem (Pα) and we an do it using the global searh theoryfor d.. optimization problems [2℄.Besides, we ombine the developed method with another approah tothe frational programming whih implies the redution to the optimi-zation problem of the form [3℄

(P1)





m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

ψi(x)− αiφi(x) ≤ 0, i = 1, . . . ,m,



38 Optimization methodswhere φi(x) > 0, ψi(x) > 0, i = 1, . . . ,m, ∀x ∈ S.Furthermore, using the global searh theory for problems with d..onstraints [4℄�[6℄, we proposed the global searh method for solving thefrational programming problem (P) via the ombination of methods forproblems (Pα) and (P1).Finally, rather large �eld of omputational simulation testings havebeen arried out for some speial test funtions formed by linear and/oronvex quadrati funtions.First, the omputational experiments have been performed on thesmall dimension's examples from [7℄. Afterwords, the approah has beentested on speially designed test problems up to dimension n = m = 100.At the end, the test problems of dimension up to n = m = 200 designedwith the help of [8℄ have been also solved by the developed algorithms.After analysis the results of omputational simulations look ratherpromising and ompetitive. Referenes1. Frenk J. B. G., Shaible S. Frational programming // Handbookof Generalized Convexity and Generalized Monotoniity (ed. by N.Hadjisavvas, S. Komlosi, S. Shaible), Series Nononvex Optimiza-tion and Its Appliations, V. 76, Springer, 2002. P. 335�386.2. Strekalovsky A.S. Elements of nononvex optimization.Novosibirsk: Nauka, 2003 (in Russian).3. Dur M., Horst R., Thoai N.V. Solving sum-of-ratios frationalprograms using e�ient points // Optimization. 2001. V. 49.P. 447�466.4. Strekalovsky A.S. Minimizing sequenes in problems with d..onstraints // Computational Mathematis and MathematialPhysis. 2005. V. 45(3). P. 435�447.5. Strekalovsky A.S. On loal searh in d.. optimization problems //Applied Mathematis and Computation. 2015. V. 255. P. 73�83.6. Gruzdeva T.V., Strekalovsky A.S. Loal searh in problems withnononvex onstraints // Computational Mathematis and Mathe-matial Physis. 2007. V. 47(3). P. 381�396.7. Ma B., Geng L., Yin J., Fan L. An e�etive algorithm for globallysolving a lass of linear frational programming problem // Journalof software. 2013. V. 8(1). P. 118�125.8. Jong Y.-C. An e�ient global optimization algorithm for nonlinearsum-of-ratios problem // Repository of e-prints about optimization



Optimization methods 39and related topis. 2012. http://www.optimization-online.org/DB_FILE/2012/08/3586.pdfWhen the solutions of omplementarityproblems are monotone with respet toparameters∗V.V. Kalashnikov1,2, N.I. Kalashnykova3, and A. Gar��a-Mart��nez2
1Central Eonomis and Mathematis Institute (CEMI), Mosow,Russian Federation
2Tenol�ogio de Monterrey (ITESM), Monterrey, Nuevo Le�on,Mexio

3Universidad Aut�onoma de Nuevo Le�on (UANL), San Niol�as de losGarza, Nuevo Le�on, MexioIn many applied problems (suh as, e.g., elasto-hydrodynamilubriation problem, some eonomi equilibrium problems, et.), one ofthe important question is if ertain omplementarity problem's solutionis monotone with respet to parameters. Our paper investigates thisquestion and provides several su�ient onditions that guarantee suha monotoniity of the solutions to linear and nonlinear omplementarityproblems with parameters. In the majority of ases, it is required thatthe prinipal mapping of the omplementarity problem be monotone bydeision variables and, vie versa, antitone with respet to parameters.The nonlinear omplementarity problem (CP) is well-known and anbe stated as follows: Given a ontinuous mapping f : Rn
+ → Rn, �nd an

n-vetor z ∈ Rn suh that
z ≥ 0, f(z) ≥ 0, and zT f(z) = 0. (1)A parametri version of the linear omplementarity problem (i.e.,when f is a�ne) was formulated by Maier [1℄. The problem ofmonotoniity of solutions in the parametri linear omplementarityproblem (PLCP) was also studied by Cottle [2℄ who assumed the matrix

M of the parametrized mapping f(z; t) =Mz+q+tp either to be positivesemi-de�nite (PSD), or else to have positive prinipal minors (PM).The results of Cottle were later generalized by Megiddo [3℄ whowent even further in [4℄ and examined the general nonlinear parametri
∗This researh was �nanially supported by the Researh Department of theTenol�ogio de Monterrey, Campus Monterrey, and by the SEP-CONACYT projetCB-2013-01-221676, Mexio. The seond author was also supported by the PAICYTprojet No. CE250-09 and by the SEP-CONACYT projet CB-2009-01-127691.



40 Optimization methodsomplementarity problem (NPCP) in the form: Given a ontinuousmapping g : Rn+1
+ → Rn, solve a family {g(·; t) : t ≥ 0} of non-parametri CPs.Both Maier [1℄ and Cottle [2℄ laimed that the monotoniity propertyin linear parametri omplementarity problems (LPCP) is often desiredin the ontext of elastoplasti strutures. Cottle also suggested thata generalization of his results �would �nd appliations in struturalmehanis as well as eonomi equilibrium theory". All that was lateron�rmed in numerous papers (see, e.g., Kostreva [5℄, Ferris and Pang[6℄, to mention only few).In ontrast to the original problem's formulation by Maier, Cottle,and Megiddo, who tried to �nd not only su�ient but also neessaryonditions of the monotoniity of the solutions of the orrespondingparametri omplementarity problems with respet to the parameters,we are to onsider and examine a bit simpler task. Namely, we areinterested in �nding only su�ient onditions of the latter monotoniity,and beause of that, we study a more general problem than thatexamined in [1�6℄.Now onsider a nonlinear omplementarity problem with parameters:Given a parameter vetor u = (u1, u2, ..., um) ∈ Rm, �nd a point x ∈ Rnsuh that
x ≥ 0, Ax+Bu+ ϕ(x, u) ≥ 0, and

xT (Ax+Bu+ ϕ(x, u)) = 0; (2)here A,B are given n×n and n×m real matries, and ϕ : Rn×Rm → Rnis a nonlinear funtion.In order not to restrit our researh to the ase of equal numbersof deision variables and parameters, we will use not the onept ofmonotoniity de�ned by the inner produt of the vetor-funtion andthe vetor of parameters, but the omponent-wise monotoniity notion(f., e.g., [7℄) given below.De�nition 1. A mapping f : Rn →
Rm is alled monotone [antitone℄ if
x1 ≥ x2 implies f(x1) ≥ f(x2) [f(x1) ≤ f(x2)]. (We say that
a ≥ b if ai ≥ bi, i = 1, ..., n, i.e., the partial order relation in vetorspaes is involved).Now the following result an be established. The de�nition andimportant properties of M -matries an be found, e.g., in [8℄.Theorem 1. Let A be a positive de�nite M-matrix, B a non-positiveone, and ϕ(x, u) a di�erentiable funtion monotone by x and antitone



Optimization methods 41with respet to u. Moreover, suppose ϕ′
x = ϕ′

x(x, u) to be a positivede�nite M-matrix for eah x and u. Then the solution x = x(u) toproblem (2) is monotone by u.The symmetrial result onerning the antitone behavior of solutionsof the omplementarity problem (2) is obtained readily by the theorembelow.Theorem 2. Let A be a positive de�nite M-matrix, B a non-negativeone, and ϕ(x, u) a di�erentiable funtion monotone by both x and u.Moreover, suppose ϕ′
x = ϕ′

x(x, u) to be a positive de�nite M-matrix foreah x and u. Then the solution x = x(u) to problem (2) is antitone by
u. Extensions of the above-mentioned results to impliitomplementarity problems an be found in [9℄. The monotoniityof solutions to parametri variational inequalities, both in �nite- andin�nite-dimensional spaes, will be the objet of the authors' futureresearh. Referenes1. Maier G. Problem 72-7*: A parametri linear omplementarityproblem // SIAM Review. 1972. V. 14, No. 2. P. 364�365. (12. Cottle R.W. Monotone solutions in parametri linearomplementarity problems // Math. Programming. 1972. V. 3.No. 2. P. 210�224.3. Megiddo N. On monotoniity in parametri linear omplementarityproblems// Math. Programming. 1977. V. 12. No. 1. P. 60�66.4. Megiddo N. On the parametri nonlinear omplementarity problem// Math. Programming Study. 1978. V. 17. No. 1. P. 142�150.5. Kostreva M.M. Elasto-hydrodynami lubriation: A nonlinearomplementarity problem // Int. J. Numer. Methods Fluids. 1984.V. 4. No. 3. P. 377�397.6. Ferris M.C., Pang J.-S. Engineering and eonomi appliations ofomplementarity problems // SIAM Review. 1997. V. 39. No. 5.P. 669�713.7. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of NonlinearEquations in Several Variables. Aademi Press, New York/London(1970).8. Berman A., Plemmons D. Nonnegative Matries in MathematialSienes. New York: Aademi Press, 1979.9. Kalashnikov V.V., Kalashnykova N.I., and Castillo-P�erez F.J.Solutions of parametri omplementarity problems monotone with



42 Optimization methodsrespet to parameters // Journal of Global Optimization. 2016.V. 64. No. 4. P. 703�719.Complexity estimates for one variant of thebranh-and-bound algorithm for the subsetsum problem∗R.M. Kolpakov, M.A. Posypkin, and Si Thu Thant SinLomonosov MSU, Dorodniyn Computing Centre, FRC CSC RAS,Mosow, RussiaThe subset sum problem is a partiular ase of the knapsak problem[1℄ stated as follows:




f(x) =
∑n

i=1 wixi → max,∑n
i=1 wixi ≤ C,

xi ∈ {0, 1}, i ∈ 1, n.

(1)Despite its simple formulation the problem is NP-hard. One of the moste�ient methods for resolution of this problem is the Branh-and-Boundmethod with various elimination rules [1,2℄. Though it is well knownthat advaned Branh-and-Boundmethods an e�iently ope with hardsubset sum instanes the omplexity theory was not enough elaborated.We onsider the Branh-and-Bound method with the dominanerelation used to eliminate sub-problems. Let P is a sub-problem of theproblem (1) obtained by �xing variables x1, . . . , xτ(P ), τ(P ) ∈ 0, n:




f(x) =
∑n

i=1 wixi → max,∑n
i=1 wixi ≤ C,

xi = θi(P ), i ∈ 1, τ(P )

xi ∈ {0, 1}, i ∈ τ(P ) + 1, n.

(2)Let us introdue the following designations
C(P ) = C −∑τ(P )

i=1 θi(P )wi,

k(P ) = {max k : k ∈ 0, n− τ(P ),
∑τ(P )+k

i=τ(P )+1 wi ≤ C(P )},
k(P ) = {max k : k ∈ 0, n− τ(P ),

∑n
i=n−k+1 wi ≤ C(P )},

∗This researh is supported by RFBR, projet 15-07-03102 and by Ministry ofSiene and Eduation of Republi of Kazakhstan, projet 0115PK00554.



Optimization methods 43If w1 ≥ w2 ≥ · · · ≥ wn then obviously k(P ) ≤ k(P ). The sub-problem Pis said to ful�ll the ardinality elimination rule if k(P ) = k(P ). In thisase the optimal solution of P is readily available:
x∗i (P ) =





θi(P ), if i ∈ 1, τ(P ),

1, if i ∈ τ(P ) + 1, τ + k(P ),

0, if i ∈ τ(P ) + k(P ) + 1, n.

(3)Therefore the sub-problem an be exluded from the further searh afterthe inumbent solution is updated.We say that the sub-problem P1 is equivalent to the problem P2if τ(P1) = τ(P2) and C(P1) = C(P2). It is lear that equivalent sub-problems have the same objetive value of the optimal solution andtherefore only one equivalent sub-problems should be saved during thesearh proess (the other one is eliminated). The introdued eliminationrule is a partiular ase of the more general dominane relation for theknapsak problem [1℄.After sorting the items in the non-inreasing order, i.e. w1 ≥
w2 ≥ · · · ≥ wn, the algorithm follows the standard branh-and-boundsheme. On eah iteration it takes a sub-problem from the list, applieselimination rules and if the sub-problem is not eliminated it splits thesub-problem into smaller sub-problems by �xing the next free (non-�xed)variable. The omplexity of the problem (1) is de�ned as the number ofsub-problems onsidered by the algorithm desribed above during theresolution proess.The omplexity bound for this problem is given by the followingtheorem.Theorem. If n ≥ 3 the worst ase omplexity for the problem (1) is
2
(

n
⌊n

2 ⌋
)
− 1.It is worth to note that the worst ase omplexity is reduedapproximately twie by applying the ardinality elimination ruleinstead of the standard elimination rule while using of the equivaleneelimination rule does not a�et the upper bound.Referenes1. Martello S., Toth P. Knapsak Problems. John Wiley & Sons Ltd.,1990.2. Kellerer H., Pfershy U., Pisinger D. Knapsak Problems. SpringerVerlag, 2004.



44 Optimization methodsSeletive bi-oordinate variations foroptimization problems with simplexonstraints∗I.V. KonnovKazan Federal University, Kazan, RussiaWe onsider a speial lass of optimization problems, where a goalfuntion f is supposed to be smooth and a feasible set D is de�ned bysimplex onstraints. We write this problem as
min
x∈D

→ f(x), (1)where D =
{
x ∈ R

n
+ 〈e, x〉 = b

}, b is a �xed (non-negative) number, eis the vetor of units, Rn
+ denotes the non-negative orthant in R

n.It is well known that many problems of optimal alloation of someresoure within a system redue to (1); see e.g. [1, 2℄. In partiular,they often arise in information and teleommuniation networks; see e.g.[3℄. Besides, similar optimization problems arise in mahine learning,signal, speeh and image reognition and proessing, and related �elds;see e.g. [4, 5℄. These problems have huge dimensionality, their data maybe very inexat and inomplete, but they do not require high aurayof solutions. For this reason, we are interested in developing low ostiterative methods, whih keep the onvergene properties of the usualones, but redue the total omputational expenses. Due to the simplextype onstraints, the bi-oordinate iterative methods may appear rathere�ient here. The �rst bi-oordinate method was proposed in [6℄. Thedetailed desription of its reent versions is given in [7℄.In this work, we develop a seletive bi-oordinate method with speialthreshold ontrol and toleranes, whih follows the approah suggestedin [8℄. It should be noted that this method an be treated as a self-adjustment proess for attaining an equilibrium state of a general losedeonomi system; see [8, 9℄.A point x̄ is alled a stationary point of (1) if
x̄ ∈ D, ∀i, j ∈ I = {1, . . . , n}, i 6= j, x̄i > 0 =⇒ gi(x̄) ≤ gj(x̄),where gi(x) = ∂f(x)

∂xi
. Eah solution of problem (1) is a stationary point,the reverse assertion is true if f is pseudoonvex.

∗This researh is supported by the RFBR grant, projet No. 16-01-00109a.



Optimization methods 45We now desribe the iterative method for �nding stationary points.Let Iε(x) = {i ∈ I | xi ≥ ε}, Z+ denote the set of non-negative integers.Method (BCV). Initialization: Choose a point z0 ∈ D andsequenes {δl} ց 0, {εl} ց 0. Set l = 1.Basi yle: Step 0: Set k = 0, x0 = zl−1.Step 1: Choose an index i ∈ Iεl(x
k) suh that gi(xk) − gj(x

k) ≥ δl forsome j ∈ I, set dki = −1, dkj = 1, dks = 0 for other indies s 6= i, j, andgo to Step 2. Otherwise set zl = xk, l = l+1 and go to Step 0. (Restart)Step 2: Find m as the smallest number in Z+ suh that
f(xk + θmxki d

k) ≤ f(xk) + βθmxki 〈f ′(xk), dk〉, (2)set λk = θmxki , xk+1 = xk + λkd
k, k = k + 1 and go to Step 1.The onvergene properties of the method are formulated as follows.Theorem 1. (a) For eah stage l, the number of hanges of index kin the basi yle is �nite;(b) the sequene {zl} has limit points and all these points are stationaryfor (1);() if f is pseudoonvex, then liml→∞ f(zl) = f∗, and all the limit pointsof {zl} are solutions of (1).The above desent method admits various modi�ations. Firstly, wean take the exat one-dimensional minimization rule instead of theurrent Armijo rule in (2). Seondly, if the funtion f is onvex, wean replae (2) with the following:

〈f ′(xk + θmxki c), d
k〉 ≤ βθmxki 〈f ′(xk), dk〉,where only two seleted oordinates of dk are nonzero. Next, if thegradient of the funtion f possesses even partial Lipshitz ontinuityproperties, we an simply take the �xed stepsize.Moreover, given a starting point z0 and a number α > 0, we anevaluate the omplexity of the method in this ase. It is de�ned asthe total number of iterations at l(α) stages suh that l(α) is themaximal number l with f(zl) − f∗ ≥ α and denoted by N(α), where

f∗ = inf
x∈D

f(x). If the funtion f is onvex with Lipshitz ontinuouspartial gradients, then the method attains the omplexity estimate
N(α) = O(1/α); see [10℄.



46 Optimization methodsIn omputational tests, (BCV) showed rather rapid onvergene inomparison with the known methods suh as the onditional gradientmethod and bi-oordinate desent methods with random and marginalestimate rules for seletion of oordinate indies. In partiular, it reduesthe total volume of omputational expenses in omparison with theonditional gradient method sine it does not require alulations ofall the partial derivatives at eah iteration in general. At the sametime, (BCV) is suitable for parallel and distributed (multi-agent)omputations.The method admits extensions to the more general lasses ofproblems, whih involve both lower and upper bounds for variables,besides, the equality onstraint 〈e, x〉 = b an be replaed by 〈a, x〉 = b,where a is an arbitrary vetor in R
n and b is an arbitrary number.Referenes1. Konnov I.V. Equilibrium Models and Variational Inequalities.Amsterdam: Elsevier, 2007.2. Patriksson M. A survey on the ontinuous nonlinear resourealloation problem // Eur. J. Oper. Res. 2008. V. 185, � 1. P. 1�46.3. Sta�nzak S., Wizanowski M., Bohe H. Resoure Alloation inWireless Networks. Theory and Algorithms. Berlin: Springer, 2006.4. Burges C.J.C. A tutorial on support vetor mahines for patternreognition// Data Mining Know. Dis. 1998. V. 2, �2. P.121�167.5. Cevher V., Beker S., Shmidt M. Convex optimization for big data// Signal Proess. Magaz. 2014. V.31, �5. P.32�43.6. Korpelevih G.M. Coordinate desent method for minimizationproblems with linear inequality onstraints and matrix games//Mathematial Methods for Solving Eonomi Problems. V. 9.Mosow: Nauka, 1980. P. 84�97.7. Bek A. The 2-oordinate desent method for solving double-sidedsimplex onstrained minimization problems // J. Optim. Theory.Appl. 2014. V. 162, �3. P.892�919.8. Konnov I.V. Seletive bi-oordinate variations for resoure alloati-on type problems// Comp. Optim. Appl. DOI 10.1007/s10589-016-9824-29. Konnov I.V. An alternative eonomi equilibrium model with di�e-rent implementation mehanisms// Adv. Model. Optim. 2015.V.17, �2. P.245�265.



Optimization methods 4710. Konnov I.V. A method of bi-oordinate variations with toleranesand its onvergene// Russ. Mathem. (Iz. VUZ). 2016. V. 60, �1.P.68�72.Normative dynami analysis of aheterogeneous omputing systemYu.E. Malahenko and I.A. NazarovaDorodniyn Computing Centre, Federal Researh Center �ComputerSiene and Control� of Russian Aademy of Sienes, Mosow, RussiaConsider the heterogeneous omputer systems (CS) that proessesa �ow of various omputationally intensive tasks under unertainty(CITUs). To improve performane, a CS has speialized units thatonsiderably speed-up of some proedures by ompare with a general-purpose proessor. Di�erent types of units ompleted the same task ina di�erent amount of time; moreover, some an exeute only spei�types of algorithms and are appliable to a limited lass of tasks. Touse the CS resoures more e�iently and satisfy the priniple of equalsigni�ane of tasks when the CITUs are sheduled, optimization modelsand approahes are used (see [1-3℄) that form a hardware and softwareenvironment. In this report, we study the operation of a heterogeneousomputer system from the viewpoint of its performane. Typially,performane is de�ned as the amount of omputational work performedin a unit of time or during a time interval.The number and performane of proessing units in a heterogeneousCS may hange with time; moreover, new versions of software andontrol subsystems an drastially hange the amount and the wholeset of works. Hene, it is the problem of analysis of the CS funtionalapabilities dynamis under the onditions of hanges in the workabilityof elements due to failures.In this report make use a multiparameter model (MP model) toanalyze the dynamis of a CS performane based on deriving guaranteedbounds on the amount of work that an be aomplished provided thatthe resoures are alloated e�iently. The input task �ow is intensive,and the CS an omplete only a part of these tasks. As the harateristiof the CS funtional apabilities make use of the vetor of simultaneouslyexeuted tasks. The omponents of this vetor orrespond to the amountof omputational work that an be jointly ompleted in one operationalwindow. Eah feasible alloation of available resoures is assigned avetor onsisting of the set of exeuted tasks, and the points at the



48 Optimization methodsboundary of this set determine the extreme funtional apabilities of theCS. To investigate these boundaries and vetors, single-task operationalmodes are onsidered in whih the system proesses only a single typeof tasks.The maximum funtional apabilities of the CS are determined bysolving the following multiple riteria optimization problem: maximizethe vetor of exeuted tasks on the set of feasible resoure alloations.The values of the maximum amount of work that an be done in thesingle-task mode of task proessing are used as weighting oe�ients inthe multiple riteria optimization of resoure alloation. The maximumfuntional apabilities are desribed by a subset of Pareto optimal vetorsof exeuted tasks (none of the omponents of suh a vetor an beinreased without dereasing another omponent).For a fully operational CS working at its maximum performane,the onept of the initial normal state is introdued. The normativefuntional harateristis are determined by the Pareto optimal solutionto the problem for the initial normal state of the system, whih isdetermined by the weighting oe�ients obtained for the single-taskoperational modes of the system.To �nd a dynami estimate of the CS state in the beginning of eahoperational window taking into aount the atual state of resoures, theurrent limiting funtional harateristis are omputed.At ertain hek time point, the urrent maximum values of theperformane indiators are ompared with the normative ones. A two-dimensional diagram of relative deviations is onstruted, whih makesit possible to trak the dynamis of performane indiator hanges.The onstruted harts illustrate variations in the limiting funtionalharateristis when the tehnial harateristis of the system elementsvary. The analysis of the harts obtained over a long time period makes itpossible to reliably estimate the funtional apabilities of the system invarious operational states (hardware failures) when the system proessestasks of di�erent types. Referenes1. Yu.E. Malashenko and I. A. Nazarova. Control of resoure intensiveomputations under unertainty. I. Multiparametri model // J.Comput. Syst. Si. Int. 2014. V. 53, � 4. P. 497�510.2. I. K. Kupalov-Yaropolk, Yu. E. Malashenko, I. A. Nazarova, andA. F. Ronzhin. Control of resoure intensive omputations underunertainty. II. Sheduling omplex // J. Comput. Syst. Si. Int.



Optimization methods 492014. V. 53, � 5. P. 636�644.3. Yu. E. Malashenko and I. A. Nazarova. Control of resoureintensive omputations under unertainty. III. Dynami onurrentresoure alloation // Comput. Syst. Si. Int. 2015. V. 54, � 1.P. 48�58.On methods for solving quasi variationalinequalitiesM. Ja�imovi� and N. Mijajlovi�University of Montenegro, Podgoria, Montenegro1. Introdution. Consider the following quasi variational inequality:�nd x∗ ∈ C(x∗) suh that
〈F (x∗), y − x∗〉 ≥ 0 ∀y ∈ C(x∗), (1)where C : H → 2H is set-valued mapping with nonempty onvex andlosed set C(x) ⊆ H for all x from Hilbert spae H.Note that the di�ulty of problems with quasi variational inequalitiesis related to the fat that one must simultaneously solve a variationalinequality and alulate a �xed point of a set-valued mapping. Thisexplains why the literature on solution methods for quasi variationalinequalities is not too extensive. Consequently, there are numerous openquestions.We will suppose that the operator F satis�es the Lipshitz onditionwith the positive onstant L and strong monotoniity with positiveonstant µ.The theorems about existene of solutions show a notable di�erenebetween variational and quasi variational inequalities. For example, if Fis strongly monotone and Lipshitz ontinuous on losed and onvex set,then variational inequality has a unique solution. On the other hand,for quasi variational inequalities it is neessary to add a ondition (see[1,2℄):

‖ΠC(x)[z]−ΠC(y)[z]‖ ≤ λ‖x− y‖, ∀x, y, z ∈ H, λ <
µ

L
, (2)where ΠC [z] is the projetion of point z onto the set C.In many important appliations the onvex valued set C(x) an bewritten as C(x) = c(x) + C0, where C0 is a losed onvex set and c :

H → H is a Lipshitz ontinuous mapping with onstant λ > 0. In thisase, assumption (2) holds with the same value of λ (see [2℄).



50 Optimization methodsExample 1. Mapping F (x) = x, x ∈ R is strongly monotone andLipshitz ontinuous with onstants µ = L = 1. Then, for C(x) = {x}, or
C(x) = [x, x+ 1] quasi variational inequality: �nd x∗ ∈ C(x∗) suh that
〈F (x∗), y−x∗〉 ≥ 0 ∀y ∈ C(x∗), has in�nitely many solutions (the set ofsolutions is R). If C(x) = [x− 1, x] the set of solutions of this inequalityis empty.Example 2. If

C(x) =





[1/2, 1], if x ∈ [0, 1/2)
[0, 1] , if x = 1/2
[0, 1/2] , if x ∈ (1/2, 1]mapping C has a unique �xed point x∗ = 1/2, but it is not a solution of(1).2. Continuous methods. We will onsider the di�erential equation

x′(t) + x(t) = ΠC(x(t))[x(t)− α(t)F (x(t)], t ≥ 0, x(0) = x0, (3)where x0 is a given initial point in H and α > 0 is a parameter ofthe method. Then, solution x∗ of quasi variational inequality (1) is astationary point of system (3).Theorem 1. Let operator F : H → H be strongly monotone (withonstant µ > 0) and Lipshitz ontinuous (with onstant L > 0), set-valued mapping C : H → 2H with nonempty, losed and onvex values
C(x) ⊆ H ∀x ∈ H satis�es ondition (2) and parameter α(t) ∈
C([0,+∞) satis�es the following onditions: 0 < α0 ≤ α(t) ≤ α1, ∀t ≥
0, where α0 >

µ−
√

µ2−L2(2λ−λ2)

L2 , α1 <
µ+

√
µ2−L2(2λ−λ2)

L2 . Then, for all
x0 ∈ H, the trajetory x(t), t ≥ 0 de�ned by (3) onverges to the uniquesolution x∗ ∈ C(x∗) of problem (1) with the following rate:

‖x(t)− x∗‖ ≤ e−a0t/2‖x0 − x∗‖,where a0 = 1−
(
λ+

√
1− 2α1µ+ α2

0L
2

)2

.Continuous proximal method for quasi variational inequalities wasonsidered in [5℄.3. Iterative methods. Some iterative versions of the gradientprojetion method for onvex minimization, variational and quasivariational inequalities were investigated in [2,3℄. Here, we desribe



Optimization methods 51iterative proximal method, whih an be understood as an impliitvariant of the gradient projetion method. Let x0 ∈ C0 be an arbitraryinitial approximation of the solution. Suppose that, for a ertain k > 0,the approximation xk ∈ C(xk−1) has already been determined. Then theset C(xk) is de�ned. The approximation xk+1 ∈ C(xk) is determined asa solution to the following variational inequality: �nd xk+1 for whih
〈xk+1 − xk + αF (xk+1), z − xk+1 + c(xk)〉 ≥ 0, ∀z ∈ C0. (4)where α > 0. Note that this inequality is uniquely solvable. Method isdesribed. In the theorem below, we state onditions for the onvergeneof this method and estimate the onvergene rate.Theorem 2. Let the following assumptions be ful�lled:(1) C0 ⊆ H is a onvex losed subset of the Hilbert spae H, c : H →

H is a Lipshitz ontinuous operator with the onstant l > 0 and C :
H → 2H is a set-valued mapping of the form C(x) = c(x) + C0, x ∈ H;(2) The operator F : H → H is strongly monotone with the onstant
µ > 0 and Lipshitz ontinuous with the onstant L > 0;(3) The parameter α and the onstants l, L, and µ satisfy the ondi-tions l < √

2
2

µ
L ,

∣∣α− µ
L2

∣∣ < 1
L2

√
µ2 − 2l2L2. Then, for every initialapproximation x0 ∈ C0, the sequene {xk} de�ned by (4) onverges tothe unique solution x∗ ∈ C(x∗) of problem (1). Moreover, the followingestimate for the onvergene rate is valid:

‖xk+1 − x∗‖ ≤ qk(α)‖x0 − x∗‖, where q(α) =√ 1 + 2l2

1 + 2αµ− α2L2
.Referenes1. Noor M. A., Oettli W., On general nonlinear omplementarityproblems and quasi equilibria. Le Mathematihe XLIX, 1994., p.313-331,2. Nesterov Yu., Srimali L., Solving strongly monotone variationaland quasi-variational inequalities, Core disussion paper,2006/107,3. Vasiliev F. P., Methods of Optimization, Mosow, MCCME, (2011)(in Russian)4. Ja�imovi� M., Mijajlovi� N., On a Continuous Gradient-type Met-hod for Solving Quasi-variational Inequalities. Proeedings of theMontenegrin Aademy of Sienes and Arts, Vol. 19, (2010)



52 Optimization methods5. Mijajlovi�, N., Ja�imovi�, M.: Proximal methods for solving quasi-variational inequalities, Computational Mathematis and Mathe-matial Physis, Vol. 55, No. 12, pp. 1981�1985, (2015)Optimization methods and software forseeking a Nash equilibrium in hexamatrixgames∗A.V. Orlov and A.S. StrekalovskyMatrosov Institute for System Dynamis and Control Theory of SBRAS, Irkutsk, RussiaConsider the following polymatrix game of three players (hexamatrixgame) with mixed strategies:
F1(x, y, z) , 〈x,A1y +A2z〉 ↑ max

x
, x ∈ Sm,

F2(x, y, z) , 〈y,B1x+B2z〉 ↑ max
y
, y ∈ Sn,

F3(x, y, z) , 〈z, C1x+ C2y〉 ↑ max
z
, z ∈ Sl,



where Sp = {(u1, . . . , up)T ∈ IRp

∣∣ ui ≥ 0,
p∑

i=1

ui = 1}, p = m,n, l.Further onsider the following nononvex optimization problem(σ , (x, y, z, α, β, γ)):
Φ(σ) , 〈x,A1y +A2z〉+ 〈y,B1x+B2z〉+ 〈z, C1x+ C2y〉−
−α− β − γ ↑ max

σ
, σ ∈ D , {(x, y, z, α, β, γ) ∈ IRm+n+l+3 |

| x ∈ Sm, y ∈ Sn, z ∈ Sl, A1y +A2z ≤ αem,
B1x+ B2z ≤ βen, C1x+ C2y ≤ γel},





(P)where ep = (1, 1, ..., 1) ∈ IRp, p = m,n, l.The searh for a global solution to Problem (P) is equivalent to a�nding Nash equilibria in hexamatrix game [1℄ onstruted with matries
A = (A1, A2), B = (B1, B2), and C = (C1, C2).Theorem. [1℄ A point (x∗, y∗, z∗) is a Nash equilibrium point inthe hexamatrix game Γ(A,B,C) if and only if it is a part of a globalsolution σ∗ , (x∗, y∗, z∗, α∗, β∗, γ∗) ∈ IRm+n+l+3 of Problem (P). Atthe same time, the numbers α∗, β∗, and γ∗ are the payo�s of the �rst,the seond, and the third players, respetively, in the game Γ(A,B,C):

∗This researh is supported by the Russian Siene Foundation (projetNo. 15-11-20015).
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α∗ = v1(x

∗, y∗, z∗), β∗ = v2(x
∗, y∗, z∗), γ∗ = v3(x

∗, y∗, z∗). Inaddition, an optimal value V(P) of Problem (P) is equal to zero:
V(P) = Φ(σ∗) = 0.In order to solve Problem (P), we are using an approah based onGlobal Searh Theory [2℄. Aording to this theory the Global Searhonsists of two prinipal stages: 1) a loal searh, whih takes intoaount the struture of the problem under srutiny; 2) the proeduresbased on Global Optimality Conditions (GOC) [2℄, whih allow toimprove the point provided by the loal searh method, in other words,to esape a loal pit.To implement a loal searh in Problem (P), we are applying theideas, �rst, of splitting variables in several groups, and, after that, ofonseutive solving of speially onstruted LP problems with respetto the groups of variables. These ideas have previously demonstrated itse�ieny in bimatrix games [3℄, bilinear programming problems [3℄, andbilevel problems [4℄.In order to do it, onsider the following LP problems:

f1(x, β) , 〈x, (A1 +BT
1 )v + (A2 + CT

1 )w〉 − β ↑ max
(x,β)

,

(x, β) ∈ X(v, w, γ̄) , {(x, β) | x ∈ Sm,
B1x− βen ≤ −B2w, C1x ≤ γ̄el − C2v};





(LPx(v, w, γ̄))

f2(y, γ) , 〈y, (B1 +AT
1 )u+ (B2 + CT

2 )w〉 − γ ↑ max
(y,γ)

,

(y, γ) ∈ Y (u,w, ᾱ) , {(y, γ) | y ∈ Sn,
A1y ≤ ᾱem −A2w, C2y − γel ≤ −C1u};





(LPy(u,w, ᾱ))

f3(z, α) , 〈z, (C1 +AT
2 )u+ (C2 +BT

2 )v〉 − α ↑ max
(z,α)

,

(z, α) ∈ Z(u, v, β̄) , {(z, α) | z ∈ Sl,
A2z − αem ≤ −A1v, B2z ≤ β̄en −B1u}.





(LPz(u, v, β̄))Here (u, v, w, ᾱ, β̄, γ̄) ∈ D is a feasible point in Problem (P).The loal searh method based on a onseutive solving of theseLPs onverges to the point σ̂ , (x̂, ŷ, ẑ, α̂, β̂, γ̂), whih is satisfying thefollowing inequalities:
Φ(σ̂) ≥ Φ(x, ŷ, ẑ, α̂, β, γ̂) ∀(x, β) ∈ X(ŷ, ẑ, γ̂),

Φ(σ̂) ≥ Φ(x̂, y, ẑ, α̂, β̂, γ) ∀(y, γ) ∈ Y (x̂, ẑ, α̂),



54 Optimization methods
Φ(σ̂) ≥ Φ(x̂, ŷ, z, α, β̂, γ̂) ∀(z, α) ∈ Z(x̂, ŷ, β̂).Suh a point point an be alled a partially global solution of theproblem (P) (with respet to pairs (x, β), (y, γ), and (z, α)).For a global searh proedure, �rst, we need to onstrut the expliitrepresentation of the objetive funtion Φ as a di�erene of two onvexfuntions, for example, as follows:
Φ(x, y, z, α, β, γ) = h(x, y, z)− g(x, y, z, α, β, γ),

h(x, y, z) =
1

4

(
‖x+A1y‖2 + ‖x+A2z‖2 + ‖B1x+ y‖2 + ‖y +B2z‖2+

+‖C1x+ z‖2 + ‖C2y + z‖2
)
, g(σ) =

1

4

(
‖x−A1y‖2 + ‖x−A2z‖2+

+‖B1x− y‖2 + ‖y −B2z‖2 + ‖C1x− z‖2 + ‖C2y − z‖2
)
+ α+ β + γ.Therefore, the global searh method in Problem (P) is based onGOC for d.. maximization problems (see [2-4℄). Aording to [2-4℄, theglobal searh proedure onsists of several stages suh as onstruting anapproximation of the level surfae of the onvex funtion h(x, y, z), whihgenerates a basi nononvexity of the problem (P), solving the linearizedonvex problem, an implementing of additional loal searh, verifyingGOC et. As a result, taking into aount the features of Problem (P)and using all the stages of the global searh above mentioned, we haveonstruted and implemented the Global Searh Algorithm in the hexa-matrix games.The software, implementing elaborated methods of loal and globalsearh has been developed in MATLAB 7.11.0.584 R2010b. As for auxi-liary LP problems and onvex quadrati problems, they have been solvedby orresponding MATLAB subroutines of famous software pakage IBMCPLEX (v. 12.62). This pakage shows the onsiderable advantages withrespet to standard MATLAB subroutines "linprog" and "quadprog".The e�ieny of reated software is demonstrated by the results ofomputational solving of the large amount of test hexamatrix games.Referenes1. Strekalovsky A.S., Enkhbat R. Polymatrix games and optimizationproblems // Automation and Remote Control. 2014. V. 75, No. 4,P. 632�645.2. Strekalovsky A.S. Elements of nononvex optimization.Novosibirsk: Nauka, 2003 (in Russian).



Optimization methods 553. Strekalovsky A.S., Orlov A.V. Bimatrix games and bilinear prog-ramming. Mosow: FizMatLit, 2007 (in Russian).4. Strekalovsky A.S., Orlov A.V., Malyshev A.V. On omputationalsearh for optimisti solutions in bilevel problems // Journal ofGlobal Optimization. 2010. V. 48, No. 1, P. 159�172.Stability of a model preditive impulsiveontrol sheme∗F.L. PereiraSYSTEC, Faulty of Engineering, Porto University, Porto, PortugalThis artile onerns the stability of an optimal ontrol basedreeding horizon sheme - often referred to by Model PreditiveControl (MPC) - for dynami impulsive ontrol systems. An optimizingframework for state feedbak ontrol of the dynami system emergesfrom the artiulation of a disrete-time state sampling strategy with theontrol synthesis via optimality onditions, notably, neessary onditionsof optimality in the form of a Maximum Priniple (see [1,2℄, and,then, appropriately sliding the time horizon. Unlike [3℄, this is apratial approah that ombines optimality onditions with state-variable sampling in order to take into aount perturbations thata�et the behavior of real-world systems, while mitigating the hugeomputational burden typially assoiated with the on-line omputationof optimal feedbak ontrol, whih, in general, requires solving a ertainHamilton-Jaobi-Bellman partial di�erential equation, [4℄. There is notonly an abundant body of literature on MPC shemes for onventionalontrol - systems with absolutely ontinuous trajetories and referenestherein, but also, it has been widely used by the ontrol pratitioners fora signi�ant period of time now, [5℄.This state-of-a�airs strongly ontrasts with the one for impulsiveontrol systems, that is, dynami systems whose ontrol spae is enlargedto ontain measures and, thus, the assoiated trajetories are merely ofbounded variation, and, in partiular, may have jumps. In partiular, weonsider systems of the form
dx = f(t, x, u)dt+G(t, x, u)dϑwith (x(0), x(T )) ∈ C0 × CT , u ∈ U , and ϑ ∈ I, where f : [0, T ]× R

n ×
R

m → R
n, and G : [0, T ]×R

n×R
m → R

n×k are given mappings, C0 and
∗This researh is supported by FCT grant SYSTEC R&D Unit ref.UID/EEA/00147/2013.
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CT are ompat sets, U = {u ∈ L∞([0, T ];Rm) : u(t) ∈ Ω}, with ompat
Ω ⊂ R

m, I is the impulsive ontrol onstraint set, and ϑ = (µ, {uτ , vτ})is the impulsive ontrol whih is spei�ed by two omponents: a Borelmeasure µ ∈ K with range in onvex, losed and pointed one K in R
k,and a ertain pair of funtions {uτ , vτ} de�ned on the support of theatomi omponent of µ. For details, see [6,7℄.Intuitively, the need to adopt an impulsive ontrol framework ariseswhen the ontrol systems exhibits very fast and very slow dynamisabstration and the optimal ontrol problem of interest is suh thatthese two omponents of the dynamis an not be dealt with separately.There are several onepts of impulsive ontrol and impulsive trajetoriesin the literature. We onsider the ones de�ned in [6℄ whih, arguably, areamong the most sophistiated ones in that it is well suited to apturethe requirements of important lasses of engineering systems, [7℄.The MPC sheme for the this lass of impulsive ontrol systemsproposed here is a re�nement of the one desribed in Chapter 9 (AnOptimization-based Framework for Impulsive Control Systems) in [5℄and it enables the onstrution of a state feedbak ontrol law by jointlyomputing sequenes of

• sampling instants π := {ti}i≥0 in [0,+∞) with inter-samplingtimes δi > 0 suh that ti+1 = ti + δi for all i ≥ 0,
• open loop optimal ontrols on [ti, ti + T ] by solving the optimalontrol problems P(ti, xi, T ) at eah sampling instant ti ∈ π byusing the urrent measure of the state variable x(ti) = xi,where

P(ti, xi, T ) Minimize W (ti + T, x(ti + T )) +

∫ ti+T

ti

Lac(s, x(s), u(s))ds

+

∫

[ti,ti+T ]

Ls(s, x(s), u(s))dϑ(s)subjet to dx(t) = f(t, x(t), u(t))dt+G(t, x(t), u(t))dϑ(t)

∀t ∈ [ti, ti + T ],

u ∈ U|[ti,ti+T ], ϑ ∈ I|[ti,ti+T ], x(ti + T ) ∈ S,The proposed MPC sheme involves a form of reeding horizon thattakes into aount the spei�ities of the impulsive ontrol, is a follows:1. Initialization. Set parameters, speify initial data, and iterationounter i = 0.2. Sample the urrent state of the plant x(ti) = xi.



Optimization methods 573. Solve problem P(ti, xi, T ) to obtain the open-loop optimalonventional ontrol ūi ∈ U|[ti,ti+T ] and impulsive ontrol ϑ̄i ∈
I|[ti,ti+T ]. Whenever µ̄i({t}) 6= 0 (i.e., if the optimal ontrolmeasure has an atom, inluding the time endpoints ti and ti + T ),then, the optimal ar joining the assoiated trajetory endpointshas to be de�ned by omputing the optimal pair of funtions
(ūit(·), v̄it(·)) de�ned on the assoiated emerging interval [t, t +
|µ̄i({t})|].4. Determination of the next sampling instant. This is the earliesttime in whih either a time interval of duration δ elapses, or anatom of µ̄i ours. We remark that the ase of τ = 0 makes sensewhen the perturbations a�eting the system are extremely fast andan abstrat �set-valued sampling rate� is onsidered.5. Apply to the plant the ontrol pair ūi and ϑ̄i during the interval
[ti, ti+δi], being the ontrol strategy values omputed for t ≥ ti+δidisarded.6. Now the optimization time horizon slides, i.e., we onsider ti+1 =
ti + δi, we let i = i+ 1 and repeat the proedure from step 2.Here, the losed set S ⊂ R

n, and the mappingsW : [ti, ti+T ]×R
n →

R, Lac : [ti, ti+T ]×R
n×R

m → R and Ls : [ti, ti+T ]×R
n×R

m → R
k arehosen in order to ensure the stability of the MPC sheme. Under mildassumption on the data of the impulsive ontrol system, a Lyapunov likeasymptoti stability of this MPC sheme are proved in the ontext ofnonsmooth ontext, [2,8℄, and by making use of auxiliary extension ofinvariane results, [2℄, for impulsive systems.Referenes1. Arutyunov A. V. Optimality Conditions: Abnormal andDegenerate Problems. Kluwer Aademi Publishers, 2000.2. Vinter R. B. Optimal Control. Birkhauser Boston, 2000.3. Pereira F., Silva G. N. Lyapunov stability of measure drivenimpulsive systems // Di�erential Equations. 2004. V. 40. P. 1122�11304. Fraga S. L., Pereira F. Hamilton-Jaobi-Bellman Equation andFeedbak Synthesis for Impulsive Control // IEEE Trans. onAutom. Control. 2012. V. 57. P. 244�2495. Olaru S., A. Granharova A., Pereira F. (ed.). Developments inModel-Based Optimization and Control Distributed Control andIndustrial Appliations. Let Notes in Control and Inf. Si. 464,Springer, 2016.



58 Optimization methods6. Arutyunov A. V., Karamzin D. Y., Pereira F. Pontryagin'smaximum priniple for onstrained impulsive ontrol problem //Nonlin. Anal.-Theory, Method & Appl. 2012. V. 75. P. 1045�10577. Arutyunov A. V., Karamzin D. Y., Pereira F. Impulsive ControlProblems with State Constraints: R.V. Gamkrelidze Approah tothe Neessary Optimality Conditions // J. of Optim Theory &Appl. 2014. V. 166. N. 2. P. 440�4598. Mordukhovih B. S. Variational Analysis and GeneralizedDi�erentiation, I: Basi Theory, II: Appliations. Springer, Berlin,2006.On smooth approximation of onvex sets andonvex funtions∗L.N. PolyakovaSaint Petersburg State University, Saint Petersburg, Russia1. Smooth approximations of onvex sets.Let a set X ⊂ R
n be losed and onvex and x ∈ X . A losed onvexset is alled smooth if at eah of its boundary point there exists a uniquesupport hyperplane.A set

N(X, x) =
{
g ∈ R

n
∣∣ 〈g, z − x〉 6 0 ∀z ∈ X

}is alled the normal one to X at a point x ∈ X [1℄. N(X, x) is losedand onvex.Thus if the normal one at eah boundary point x ∈ X onsists of asingle ray then the set X is smooth.Let X ⊂ R
n be losed and onvex set and do not oinide with R

n.Consider the losed onvex set
Zε = X + εB1(0n), ε > 0,where

Br(x0) = {x ∈ R
n | ||x− x0|| 6 r}.Hereinafter, ||x|| = √〈x, x〉 is the Eulidean norm. Note that Zε is theset with nonempty interior under every positive ε.

∗This researh is supported by the Saint Petersburg State University grant9.38.205.2014.



Optimization methods 59Theorem 1.The normal one to Zε at every boundary point z0 ∈bd (Zε) onsists of a single ray.2. Smooth approximations of onvex funtions.Let f1, f2 : Rn → R ∪ {+∞} be onvex funtions.A funtion
f(x) = inf

x1 + x2 = x
x1, x2 ∈ R

n

{f1(x1) + f2(x2)} = inf
x1∈Rn

{f1(x1) + f2(x− x1)}is alled in�mal onvolution of two funtions f1 and f2 and is denotedby
f(x) = (f1 ⊕ f2)(x).The funtion f is onvex. The operation of taking the in�mal onvolutionof two onvex funtions is ommutative and assoiative.Fix ε > 0. De�ne a funtion

tε(x) =

{
−
√
ε2 − 〈x, x〉, ||x|| 6 ε,
+∞, ||x|| > ε,

x ∈ R
n.Note that

t∗ε(v) = ε
√
1 + 〈v, v〉, v ∈ R

n,where t∗ε is the onjugate funtion of tε.Let f : Rn → R be a onvex funtion and D ⊂ R
n be losed onvexset. Denote

X =
{
[x, µ] ∈ R

n × R
∣∣ µ ≥ f(x), x ∈ D

}
.Construt families of smooth losed onvex sets {Zε}, {Dε},

Zε = X + εB1(0n+1) ⊂ R
n+1, ε > 0,

Dε = D + εB1(0n) ⊂ R
n,and a family of onvex funtions {fε},

fε(x) =

{
inf µ, [x, µ] ∈ Zε

+∞, â îñòàëüíûõ ñëó÷àÿõ.It is not di�ult to note that dom fε = Dε and for every �xed ε > 0 thegraph of fε is a lower envelope of the set Xε.



60 Optimization methodsFix ε > 0. Let z ∈ D. Consider a family of onvex funtions {ϕε(x, z)}

ϕε(x, z) = f(z) + tε(x, z),where
tε(x, z) =

{
−
√
ε2 − ||x− z||2, x ∈ aε(z),

+∞, in other ases.Here
aε(z) = {x ∈ R

n
∣∣ ||x− z|| 6 ε } ⊂ Dε.It's obvious thatdom ϕε(·, z) = aε(z),

⋃

z∈D

aε(z) = Dε.Denote Hε(z) = epi ϕε(·, z). Consider also funtions
ϕε(x) = inf

z∈D
ϕε(x, z)and their epigraphs Hε = epi ϕε.Theorem 2. The following relations1. fε(x) = (f ⊕ tε)(x) = ϕε(x),2. dom fε = dom f1 +Bε(0n), epi fε = epi f1 +Bε(0n+1),where

Bε(0n) = {x ∈ R
n | ||x|| 6 ε}, Bε(0n+1) = {x ∈ R

n+1 | ||x|| 6 ε},hold.Theorem 3. The funtion fε is ontinuously di�erentiable at everyinterior point of the set Dε for eah �xed ε > 0.Theorem 4. The set epi fε is smooth for eah �xed ε > 0.Denote by M a set of minimizers of the funtion f on the set D, anddenote by Mε a set of minimizers of the funtion fε on the set Dε. Thease in whih these sets are empty is not exluded.Theorem 5.1. The equality M =Mε holds.2. If M is a nonempty then
fε(z

∗) = f(z∗)− ε ∀z∗ ∈M.



Optimization methods 61Referenes1. Rokafellar R.T. Convex Analysis. Prineton. New York: PrinetonUniv. Press. 1970.2. Leihtweiss K. Konvexe Mengen. Berlin. 1980.A two-step proximal algorithm of solving theproblem of equilibrium programmingV.V. SemenovKiev National Taras Shevhenko University, Kiev, UkraineLet C be a nonempty losed onvex subset of a real Hilbert spae Hand F : C × C → R be a bifuntion with F (x, x) = 0 for all x ∈ C.Consider the following equilibrium problem in the sense of Blum andOettli [1, 2℄: �nd x ∈ C suh that F (x, y) ≥ 0 ∀ y ∈ C.We propose a new iterative two-step proximal algorithm for solvingthe problem of equilibrium programming in a Hilbert spae. This methodis a result of extension of L. D. Popov's modi�ation of Arrow-Hurwizsheme for approximation of saddle points of onvex-onave funtions[3, 4℄. More preisely, we propose and analyse the following algorithm:for x1, y1 ∈ C generate the sequenes xn, yn ∈ C with the iterativesheme
{
xn+1 ∈ proxλF (yn,·)xn = argminy∈C

{
λF (yn, y) +

1
2‖y − xn‖2

}
,

yn+1 ∈ proxλF (yn,·)xn+1 = argminy∈C

{
λF (yn, y) +

1
2‖y − xn+1‖2

}
,where λ > 0.The onvergene of the algorithm is proved under the assumptionthat the solution exists and the bifuntion is pseudo-monotone andLipshitz-type. Referenes1. Blum E., Oettli W. From optimization and variational inequalitiesto equilibrium problems // Math. Stud. 1994. V. 63. P. 123�145.2. Combettes P.L., Hirstoaga S.A. Equilibrium programming in Hil-bert spaes // Journal of Nonlinear and Convex Analysis. 2005.V. 6, � 1. P. 117�136.



62 Optimization methods3. Popov L.D. A modi�ation of the Arrow-Hurwiz method forsearh of saddle points // Mathematial notes of the Aademyof Sienes of the USSR. 1980. V. 28, � 5. P. 845�848.4. Malitsky Yu.V., Semenov V.V. An Extragradient Algorithm forMonotone Variational Inequalities // Cybernetis and SystemsAnalysis. 2014. V. 50. P. 271�277.Global optimality onditions for d..programming∗A.S. StrekalovskyMatrosov Institute for System Dynamis and Control Theoryof SB RAS, Irkutsk, RussiaConsider the optimization problem:
(P) :

f0(x) ↓ min
x
, x ∈ S ⊂ IRn,

fi(x) ≤ 0, i ∈ I := {1, . . . ,m},

} (1)where all fi = gi(x) − hi(x), i ∈ I ∪ {0} with smooth onvex funtions
gi(·), hi(·), gi, hi : IR

n → IR, i ∈ I ∪ {0}.Let introdue the l∞-penalty funtion [1℄�[7℄
W (x) := max{0, f1(x), . . . , fm(x)} = max{0, fi(x), i ∈ I}. (2)Further, onsider the penalized problem as follows (σ > 0)

(Pσ) : Θσ(x) := f0(x) + σW (x) ↓ min
x
, x ∈ S. (3)As well-known [1℄�[7℄, if z ∈ Sol(Pσ), and z ∈ D := {x ∈ S : fi(x) ≤ 0,

i ∈ I}, then z ∈ Sol(P). In addition, if z ∈ Sol(P), then under supple-mentary onditions [2, 3, 5, 7℄ for some σ∗ > 0, σ∗ ≥‖ λz ‖1 (where λzis the KKT-multiplier orresponding to z), the inlusion z ∈ Sol(Pσ)holds. Moreover [6℄, Sol(P) = Sol(Pσ), so that Problems (P) and (Pσ)turn out to be equivalent ∀σ ≥ σ∗.It an be readily seen that the penalized funtion Θσ(·) is a d..funtion, sine the funtions fi(·), i ∈ I ∪ {0}, are as suh. Atually,sine σ > 0,
Θσ(x) = Gσ(x)−Hσ(x), (4)

∗This researh is supported by the Russian Siene Foundation (grant 15-11-20015).
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Hσ(x) := h0(x) + σ

∑

i∈I

hi(x), (5)
Gσ(x) := Θσ(x) +Hσ(x) =

= g0(x) + σmax

{
m∑
i=1

hi(x);max
i∈I

[gi(x) +
∑
j 6=i

hi(x)]

}
,

(6)it is lear that Gσ(·) and Hσ(·) are onvex funtions.For z ∈ S denote ζ := Θσ(z).Theorem 1. It z ∈ Sol(Pσ), then
∀(y, β) : Hσ(y) = β − ζ, (7)the following inequality holds

Gσ(x)− β ≥ 〈∇h0(y) + σ
∑

i∈I

∇hi(y), x− y〉 ∀x ∈ S. (8)#So, Theorem 1 redues nononvex (d..) Problem (Pσ) to a solvingthe family of onvex linearized problems of the form
(PσL(y)) : Gσ(x)− 〈∇Hσ(y), x〉 ↓ min

x
, x ∈ S, (9)depending on the parameters (y, β) ful�lling the equation (7).If for suh a pair (ŷ, β̂) and some u ∈ S (u may be a solution to(PσL(y))) the inequality (8) is violated, i.e.

Gσ(u) < β + 〈∇Hσ(y), u− y〉, (10)then due to onvexity of Hσ(·) we obtain with the help of (7) that
Gσ(u) < β +Hσ(u)−Hσ(y) = Hσ(u) + ζ.The latter implies that Θσ(u) = Gσ(u) −Hσ(u) < ζ := Θσ(z), so that

u ∈ S is better that z, i.e. z /∈ (Pσ).It means that Global Optimality Conditions (7), (8) of Theorem 1possesses the onstrutive (algorithmi) property allowing to onstrutloal and global searh methods for solving Problem (Pσ) [8, 9℄.In partiular, they enable us to esape a loal pit of (Pσ) and to reaha global solution. The question arise about the existene of suh a tuple
(y, β, u). the answer is given by following result.



64 Optimization methodsTheorem 2. Let for a point z ∈ S there exists v ∈ IRn suh that
(H) : Θσ(v) > Θσ(z).If z not a solution to Problem (Pσ), then one an �nd a pair

(y, β) ∈ IRn+1, satisfying (7), and a point u ∈ S suh that the inequality(10) holds. #Now let us set y = z in (9). Then from (8) it follows that
β = Θσ(z) +Hσ(z) = Gσ(z).Furthermore, from (9) we derive

Gσ(x)−Gσ(z) ≥ 〈∇Hσ(z), x− z〉 x ∈ S,that yields that z is a solution to the onvex linearized problem
(PσL(z)) : Gσ(x) − 〈∇Hσ(z), x〉 ↓ min

x
, x ∈ S,As well-known [1℄�[3℄, [6℄, due to the presentation (6) the latter problemamounts to the next one

g0(x) − 〈∇Hσ(z), x〉+ σt ↓ min
(x,t)

, x ∈ S, t ∈ IR,
∑
i∈I

hi(x) ≤ t, gi(x) +
∑
j 6=i

hi(x) ≤ t, i ∈ I.



 (11)Moreover, the KKT-onditions to Problem (11) provide for KKT-ondi-tions at z for the original Problem (P).So, the Global Optimality Conditions (7), (8) of Theorem 1 and 2are onneted with lassial optimization theory [1℄�[7℄.Referenes1. Noedal J., Wright S.J. Numerial Optimization. New York: Sprin-ger, 2006.2. Bonnans J.-F., Gilbert J.C., Lemar�ehal C., Sagastiz�abal C.A.Numerial Optimization: Theoretial and Pratial Aspets. 2nded. Berlin: Springer-Verlag, 2006.3. Izmailov A.F., Solodov M.V. Newton-Type Methods for Optimi-zation and Variational Problems. New York: Springer, 2014.4. Rokafellar R.T., Wets R.J.-.B. Variational Analysis. New York:Springer, 1998.5. Clarke F.H. Optimization and Nonsmooth Analysis. New York:Wiley-Intersiene, 1983.



Optimization methods 656. Hiriart-Urruty J.-B., Lemar�ehal C. Convex Analysis and Minimi-zation Algorithms. Berlin: Springer-Verlag, 1993.7. Burke J.V. An exat penalization viewpoint of onstrained optimi-zation // SIAM J. Control and Optimization. 1991. V. 29(4).P. 968-998.8. Strekalovsky A.S. On Solving Optimization Problems with HiddenNononvex Strutures // Optimization in Siene and Engineering(ed. by T.M. Rassias, C.A. Floudas, S. Butenko). New York: Sprin-ger, 2014. P. 465�502.9. Strekalovsky A.S. Elements of nononvex optimization.Novosibirsk: Nauka, 2003 (in Russian).Solving quadrati equation systemsvia nononvex optimization methods∗A.S. Strekalovsky, M.V. Yanulevih, and M.V. BarkovaMatrosov Institute for System Dynamis and Control Theoryof the Siberian Branh of RAS , Irkutsk, RussiaConsider the following system of quadrati equations [8℄:
fi(x) =

1

2
〈x,Cix〉+ 〈di, x〉+ γi = 0, i = 1, 2, . . . ,m, (1)where Ci, i = 1,m, are, in general, inde�nite (n× n)-matries suh that

Ci = Ai −Bi, Ai, Bi > 0 ∀i ∈ {1, 2, . . . ,m}.Further, we redue system (1) to nonsmooth optimization problemas follows:
(P) : F (x) =

m∑

i=1

|fi(x)| = G(x) −H(x) ↓ min
x
, x ∈ IRn, (2)where objetive funtion F (·) is the (d..) funtion [1,2,6℄, whih anbe represented as a di�erene of two onvex funtions. For instane, weonsider two d.. representation (j = 1, 2) of the form

F (x) = Gj(x)−Hj(x) ∀x ∈ IRn. (3)

∗This researh is supported by Russian Siene Foundation, projet No. 15-11-20015.



66 Optimization methodsHere the �rst d.. representation (3) is given by the funtions:
G1(x) = 2

m∑
i=1

max{ 1
2 〈x,Aix〉+ 〈di, x〉+ γi,

1
2 〈x,Bix〉},

H1(x) =
m∑
i=1

[
1
2 〈x, (Ai +Bi)x〉 + 〈di, x〉+ γi

]
.Further, The seond d.. representation is as follows:

G2(x) =
m∑
i=1

max{〈x,Aix〉+ 〈di, x〉+ γi, 〈x,Bix〉 − 〈di, x〉 − γi},

H2(x) =
1
2

m∑
i=1

〈x, (Ai +Bi)x〉.Note that in both d.. representations (3) the funtions Gj(·), j = 1, 2,are nonsmooth and funtions Hj(·), j = 1, 2, are di�erentiable.Proposition 1. If z is a solution to problem (P) and F (z) = 0,then z is a solution to system (1).For solving optimization problem (P) we apply the Global SearhTheory [1,2℄ based on neessary and su�ient global optimality ondi-tions. Note that global searh method inludes two prinipal parts:loal searh and proedures of improving a ritial point z ∈ IRn (i.eproedures for funding a point u ∈ IRn suh that F (u) < ζ, where
ζ := F (z)) provided by a loal searh method.To this end for a �xed vetor y ∈ IRn it is neessary to solvethe following nonsmooth onvex auxiliary (partially linearized) problem(both on every step of the speial loal searh method and on the stageof improving a ritial point):
(PL(y)) : Φy(x) = Gj(x) − 〈∇Hj(y), x〉 ↓ min

x
, x ∈ IRn, j = 1, 2.In order to perform it, we solve the nonsmooth problem (PL(y))via the smooth onvex problem, inreasing the dimension from n upto (m + n). For the �rst ase of d.. representation (3) the problem

(PL(y)) is redued to the following smooth onvex optimization problemwith quadrati inequality onstraints:




θy(x, t) = 〈e, t〉 − 〈∇H1(y), x〉 ↓ min
(x,t)

, (x, t) ∈ IRn+m,

1

2
〈x,Aix〉+ 〈di, x〉+ γi ≤

ti
2
,

〈x,Bix〉 ≤ ti, i = 1, 2, . . . ,m,

(4)



Optimization methods 67where e = (1, 1, . . . , 1)⊤ ∈ IRm and the gradient of H1(·) at point y ∈ IRnis as follows
∇H1(y) =

m∑

i=1

(Ai +Bi)y +

m∑

i=1

di.In addition, for the seond d.. representation we employ anothersmooth onvex optimization problem:




θy(x, t) = 〈e, t〉 − 〈∇H(y), x〉 ↓ min
(x,t)

, (x, t) ∈ IRn+m,

〈x,Aix〉+ 〈di, x〉+ γi ≤ ti,
〈x,Bix〉 − 〈di, x〉 − γi ≤ ti, i = 1, 2, . . . ,m,

(5)where
∇H2(y) =

m∑

i=1

(Ai +Bi)y.The omputational experiments were arried out on test problems [9℄with dimension up to 100. For solving smooth auxiliary problem (4) and(5) we apply existing methods and software (for instane, IBM ILOGCPLEX) for smooth onvex optimization [3-5℄. In addition, we omparethe e�etiveness of developed algorithms with rather popular solvers, forinstane [7℄. Referenes1. Strekalovsky A.S. Elements of Nononvex Optimization.Novosibirsk: Nauka, 2003 (in Russian).2. Strekalovsky A.S. On Solving Optimization Problems with HiddenNononvex Strutures. In: Rassias, T.M., Floudas, C.A., Butenko,S. (eds.) Optimization in Siene and Engineering. New York:Springer, 2014. P. 465�502.3. Noedal J., Wright S.J. Numerial Optimization. New York: Sprin-ger, 2006.4. Bonnans J.-F., Gilbert J.C., Lemar�ehal C., Sagastiz�abal C.A.Numerial Optimization: Theoretial and Pratial Aspets, 2ndedn. Berlin, Heidelberg: Springer-Verlag, 2006.5. Izmailov A.F., Solodov M.V. Newton-Type Methods for Optimiza-tion and Variational Problems. New York: Springer, 2014.6. Hiriart-Urruty J.-B. Generalized Di�erentiability, Duality andOptimizaton for Problems dealing with Di�erene of ConvexFuntions. In: Ponstein, J. (ed.) Convexity and Duality in



68 Optimization methodsOptimization. Leture Notes in Eonomis and Mathem. Systems.V.256. Berlin: Springer-Verlag, 1985. P. 37�69.7. Bellavia S., Maoni M., Morini B. STRSCNE: A Saled TrustRegion Solver for Constrained Nonlinear Equations // COAP.2004. V. 28, �. 1. P. 31�50.8. Ortega J.M., Rheinboldt W.C. Iterative Solution of NonlinearEquations in Several Variables. New York: Aademi Press, 1970.9. Roose A., Kulla V., Lomp M., Meressoov T. Test examples ofsystems of non-linear equations. Tallin: Estonian Software andComputer Servie Company, 1990.Variant of simplex-like method for linearsemi-de�nite programming problem∗V.G. ZhadanDorodniyn Computing Centre, FRC CSC RAS, Mosow, RussiaLet Sn denote the spae of symmetri matries of order n, and let Sn
+be the one in Sn, onsisting of positive semi-de�nite matries. We usealso the inequality M � 0 to indiate that a matrix M belongs to Sn
+.The inner produt of matries M1 and M2 of the same size is de�ned asthe trae of the matrix MT

1 M2 and is denote by M1 •M2.The linear semi-de�nite programming problem is to �nd
min C •X,

Ai •X = bi, i = 1, . . . ,m, X � 0,
(1)where the matries C ∈ Sn and Ai ∈ Sn, 1 ≤ i ≤ m, are given. ThematrixX ∈ Sn is a variable. We assume that the matries Ai, 1 ≤ i ≤ m,are linear independent.The problem dual to (1) has the form

max bTu,∑m
i=1 u

iAi + V = C, V � 0,
(2)where b = [b1, . . . , bm], V ∈ Sn.Let n△ = n(n+1)/2/ be the n-th triangular number. Let also vehXdenote the diret sum of parts of olumns of X ∈ Sn beginning with thediagonal entry. The dimension of vehX is equal to n△. The operation

∗This researh is supported by the Program of Fundamental Researh of RussianAademy of Sienes I.5 P, and by the Russian Foundation for Basi Researh(projets no.15-01-08259 and no.14-07-00805).



Optimization methods 69sveX is de�ned similarly. It di�ers from the preeding operation vehXonly in that the o�-diagonal entries of X are multiplied by √
2 beforeplaing into sveX .We denote by Ln and Dn the elimination and dupliated matriesrespetively [1℄, and by L̃n = D2Ln, D̃n = DnD

−1
2 . The matrix D2 oforder n△ is diagonal with the vetor sveE on its diagonal, where E isa matrix of ones.The optimality onditions for both problems (1) and (2) an bewritten in vetor form as

〈sveX, sveV 〉 = 0,
AsvecsveX = b,sveV = sveC −AT

svecu,
(3)where angle brakets indiate the Eulidean inner produt in �nite-dimensional vetor spae, and Asvec denotes the m × n2 matrix withsveAi as its rows, 1 ≤ i ≤ m. Matries X and V must be positivesemi-de�nite.It is possible to obtain various numerial methods for problems (1)and (2), solving the system (3) by various ways. Here we onsider thevariant of simplex-like method.Denote by FP the feasible set in problem (1). Let X ∈ FP , and let

X = QDiag (η1, . . . , ηr, 0, . . . , 0)QT ,where Q is an orthogonal matrix of order n, ηi > 0, 1 ≤ i ≤ r. Let
QB be the n × r matrix formed from the �rst r olumns of Q, and let
AQB

i = QT
BAiQB, 1 ≤ i ≤ m. Then X is an extreme point of FP , if andonly if rank [AQB

1 , . . . , AQB
m

]
= r△.Thus the point X ∈ FP may be extreme only when the rank r of X issuh that r△ ≤ m. We say that the extreme point X ∈ FP is regularif r△ = m. Otherwise, in the ase where r△ < m, we all the extremepoint X irregular.Denote by AQB

svec the m× r△ matrix whose rows are vetors sveAi,
1 ≤ i ≤ m. Also denote by CQB the matrix QT

BCQB and by V QB � thematrix QT
BV QB. It is evident that the �rst equality in (3) is ful�lled, if

V QB = 0rr.
1. Pivoting in a regular extreme point X . In this ase we have thesystem of linear equationssveV QB = sveCQB −

(
AQB

svec

)T
u = 0r△ , (4)



70 Optimization methodswith the non-degenerate matrix AQB
svec of order m = r△. Therefore

u =
((

AQB
svec

)T)−1 sveCQB .If the matrix V (u) = C −∑m
i=1 u

iAi is positive semi-de�nite, then X isa solution of problem (1). In what follows we assume that it is not suha ase.Represent the matrix V in the form V = HDiag(θ)HT , where H isan orthogonal matrix. Then there exists the eigenvalue θk < 0 among alleigenvalues θ. Let hk be the orresponding eigenvetor. It an be provedthat the vetor hk does non belong to the olumns spae of the matrix
QB. The point X is updated in aordane with the following formulae

X̄ = X + α∆X, ∆X = QB∆ZQ
T
B + hkh

T
k , (5)where α > 0 is a stepsize, and the matrix ∆Z satis�es to equations

Ai •
[
QB∆ZQ

T
B + hkh

T
k

]
= 0, 1 ≤ i ≤ m.The value of objetive funtion C • X in the updated point X̄ is lessthan in the previous point X , namely

C • X̄ = C •X + αθk < C •X. (6)The point X̄ is an extreme point of FP too.
2. Pivoting in an irregular extreme point X . In this ase the system(4) is underdetermined. Therefore we take the normal solution

u =
(
AQB

svec

) [(
AQB

svec

)T (AQB
svec

)]−1 sveCQB .The matrix ∆X in (5) is replaed by the following one
∆X = [QB hk]

[
∆Z w
wT 1

]
[QB hk]

T
,where the vetor w is hosen by a speial way in order to preserve theformulae (6). Here we suppose in addition that m = r△ + p with 0 <

p < r.Theorem. Let the problem (1) be nondegenerate. Let also the startingextreme point X0 ∈ FP be suh that the set
FP (X0) = {X ∈ FP : C •X ≤ C •X0}



Optimization methods 71is onstrained. Then the sequenes {Xk} generated by the proposedmethod belongs to FP (X0) and onverges to the solution of (1).There are some other generalizations of simplex-method for linearsemi-de�nite programming problems (see, for example, [2℄).Referenes1. Magnus J.R., Neudeker H. The elimination matrix: some lemmasand appliations // SIAM J. Alg. Dis. Math. 1980. V. 1. � 4.P. 422�449.2. Lasserre J.B. Linear programming with positive semi-de�nitematrees // MPE. 1996. V. 2. P. 499�522.Covering onstant of the restrition of alinear mapping to a onvex one∗S.E. Zhukovskiy and Z.T. ZhukovskayaPeoples' Friendship University of Russia, Mosow, RussiaThis work relies on the results in [1℄, and is an extension of thedevelopment in [2, 3℄.Given a linear mapping A : Rn → R
k and vetors b1, ..., bs ∈ R

n,denote
K := {x ∈ R

n : 〈x, bj〉 ≤ 0, j = 1, s}.Here 〈·, ·〉 states for inner produt, | · | states for the orrespondingEulidian norm.In this paper, we onsider the problem of �nding of a prior estimatefor distane from an arbitrary point x0 ∈ K to the set of solutions tothe system Ax = y, x ∈ K, where y ∈ AK is an arbitrary point.Ho�man's lemma implies that there exists α > 0 suh that
∀x0 ∈ K, ∀ y ∈ AK ∃x ∈ K : y = Ax and |x−x0| ≤

|y −Ax0|
α

. (1)So, the desired estimate is linear. There appears a natural question: howan the number α be alulated for given matrix A and vetors bj. Belowwe state a proposition that redues this problem to the same problem inthe spae Rn−1 with the lower dimension.The mentioned onstant α is also alled the overing onstant of themapping A|K : K → AK. Reall the orresponding onept. Let X, Ybe metri spaes with metris ρX and ρY , respetively, α > 0 be given.
∗This researh is supported by the RFBR grants (projets �15-01-04601, 16-01-00677).



72 Optimization methodsDe�nition. The mapping Ψ : X → Y is alled α-overing, if
BY (Ψ(x0), αr) ⊂ Ψ

(
BX(x0, r)

)
∀x0 ∈ X, ∀r ≥ 0. (2)The least upper bound of all positive α for whih (2) holds is alledovering modulus of Ψ. We denote this number by cov(Ψ).The onept of overing was used in [1℄ to derive su�ient onditionsfor existene of oinidene points of two mappings. In [2℄, the stabilityof oinidene points of overing and Lipshitz mappings was proved.The overing mappings are applied for investigation of impliit ordinarydi�erential equations (see [3℄), abstrat and integral Volterra equations(see [4℄), impliit di�erential inlusions (see [5℄), et.The stated de�nition diretly implies that the mapping A|K : K →

AK is α-overing if and only if (1) holds. So, the initial problem an bestated as a the problem of �nding of the mapping A|K overing onstant.At the same time, the most interest auses not �nding of α > 0 satisfying(1), but the number cov(A|K), sine the interval (0, cov(A|K)) is the setof all the desired α.Let us state the main result. Assume that(i) interior of K is nonempty;(ii) for eah j = 1, s, inequality 〈bj, x〉 ≤ 0 is not a onsequene of thesystem 〈bi, x〉 ≤ 0, i 6= j;(iii) linear mapping A is not injetive.Denote by Γj the fae of the one K that is orthogonal to bj, i.e. Γj =
{x ∈ K : 〈bj , x〉 = 0}. It is a straightforward task to ensure that thedimension of Γj equals to n− 1 if (ii) holds.Lemma. Assumptions (i)�(iii) implies cov(A|K) = min

j=1,s
cov(A|Γj

).Assumptions (i)�(iii) are not burdensome. In order to assumption(ii) be satis�ed, from the system 〈bi, x〉 ≤ 0, i = 1, s, there an beexluded the inequalities 〈bj, x〉 ≤ 0, whih are onsequenes of thesystems 〈bi, x〉 ≤ 0, i 6= j. The set of solutions to the obtained systemoinides with K. If the interior of K is empty then the initial probleman be onsidered on the linear hull of the one K instead of Rn. In thisase assumption (iii) an be hanged by the noninjetivity of A on thelinear hull of K.This lemma annot be applied in the ase when (i) and (ii) holdand (iii) is violated. However, in this ase, it is obvious that cov(A|K)



Optimization methods 73oinide with cov(A), whih is equal to the least eigenvalue of A∗A (see,for example, [6℄, �6.2.2). Referenes1. Arutyunov A.V. Covering mappings in metri spaes and �xedpoints // Doklady Mathematis, 2007. V. 76. Iss. 2. P. 665�668.2. Arutyunov A.V. Stability of Coinidene Points and Properties ofCovering Mappings // Mat. Zametki, 2009. V. 86. Iss. 2. P. 163�169.3. Arutyunov A.V., Avakov E.R., Zhukovskiy E.S. Coveringmappings and their appliations to di�erential equations unsolvedfor the derivative // Di�. Equations, 2009. V. 45. Iss. 5. P. 627�649.4. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coveringmappings and well-posedness of nonlinear Volterra equations //Nonlinear Analysis: Theory, Methods and Appliations, 2012. V.75. P. 1026�1044.5. Arutyunov A.V., Pereira F.L., V.A. de Oliveira, Zhukovskiy E.S.,Zhukovskiy S.E. On the solvability of impliit di�erential inlusions// Appliable Analysis, 2015. V. 94. Iss. 1. P. 129�143.6. Io�e A.D., Tikhomirov V.M. Theory of Extremal Problems.Mosow: Nauka, 1984 (in Russian).Live migration of virtual resoures inmulti-tenant data enters ∗I.A. Zotov and V.A. KostenkoLomonosov Mosow State Univerity , Mosow , Russian FederationThis work extends [1,2℄ and relies heavily on desriptions introduedin those works.In a modern multi-tenant data enters sheduling is a ruialproblem, that greatly a�ets performane and utilization of physialdevies and overall omputational apabilities. Heavily loaded dataenters su�er from resoure fragmentation and underutilization. Theseissues ould be resolved during maintenane, but this always requiresinterruption of virtual resoures aessibility, whih is impossible inInfrastruture-as-a-Servie (IaaS) model, where end user spei�allydemands uninterrupted servies.
∗This researh is supported by the Ministry of Eduation and Siene of theRussian Federation, ID RFMEFI60714X0070, agreement 14.607.21.0070.



74 Optimization methodsIn [1,2℄ we propose a basi mathematial de�nition of IaaSmultitenant data enter along with a tenant de�nition and a set ofSLA onstraints to desribe uninterruptable servie ontrats. In [3℄ wede�ne a sheduling algorithm that resolves plaement problem of tenantsonto physial resoures while holding SLA's. This algorithm shows asigni�ant improvement in resoure utilization over those implementedin [4-6℄, providing either smaller load on eah physial devie, or fullload on the subset of servers, allowing to shut down remaining ones thusinreasing energy e�ieny of data enter.The experimental researh presented in [3℄ shows, that e�etiveresoure utilization in a heavily fragmented data enter with more than60% utilization yields many reloations of working virtual mahines anddatabase instanes. The number of virtual resoures reloated grows withthe overall load of data enter. To maintain uninterrupted servie fromthose resoures the data enter ontrol layer should provide mehanismsfor live migration. A shedule of the live migration should be onstrutedby the sheduling algorithm that reates a tenant plaement. If itan't devise the migration shedule for a given plaement, the namedplaement should be rejeted and reonstruted from srath.We desribe a set of parameters that will a�et migration of a virtualmahine or a database instane in a live data enter. The key parametersof migrating virtual mahine in this respet are RAM onsumption, RAMexhange speed and external ommuniations speed. The parameter ofdata enter is urrent load of it's resoures, namely network resoures.We laim that the time of migration of a given virtual mahine dependsonly on those parameters. Su�ient network throughput between urrentworking mahine and it's mirrored replia on the destination serverallows to transfer all working data to the destination virtual mahineuntill it is fully up to date with urrent virtual mahine. The souremahine an then be transparently disabled and removed from dataenter, thus �nishing the migration proess.We then de�ne a set of onstraints that allows to alulate overallmigration time of virtual mahine on given data enter workload andvirtual mahine parameters. This onstraints allow to devise migrationosts of all the virtual resoures that need to be reloated alongside witha general feasibility of omplete migration shedule.Based on these onstraints we introdue modi�ed sheduler algorithm[3℄, that is aware of migration osts and is able to onstrut a feasiblemigration shedule. It allows to onstrut only resoure plaement thatan be performed on a live data enter without interrupting any of



Optimization methods 75working or migrating virtual resoures servies. The algorithm an alsobe provided with a diretive migration time, so that the onstrutedmigration shedule does not exeed this additional onstraint. Dataenter that utilizes the given sheduling algorithm is able to provideuninterrupted servie as well as guarantee all tenants SLA's during thetime of migration.This work introdues mathematial apparatus to formulate and hektime onstraints for migration of virtual resoures based only on theirparameters and work load of data enter. Using this apparatus wede�ne a migration-aware sheduling algorithm that an be used assheduler in data enter, whih implements IaaS model and is to provideuninterrupted servie alongside with high utilization of it's resoures.Referenes1. P. M. Vdovin, I. A. Zotov, V. A. Kostenko, et al., "Data enterresoure alloation problem and approahes to its solution,"//in VII Mosow Int. Conf. on Operations Researh (ORM2013)(Vyhisl. Tsentr Ross. Akad. Nauk, Mosow, 2013), Vol. 2, pp.30-32.2. P. M. Vdovin, I. A. Zotov, V. A. Kostenko et al., "Comparingvarious approahes to resoure alloating in data enters"//Journal of Computer and Systems Sienes International. � 2014.� Vol. 53, no. 5. � P. 689-701.3. Zotov I. A., Kostenko V. A. "Resoure alloation algorithm in dataenters with a uni�ed sheduler for di�erent types of resoures"//Journal of Computer and Systems Sienes International. � 2015.� Vol. 54, no. 1. � P. 59-68.4. S. Nagendram, J. V. Lakshmi, D. V. Rao, et al., "E�ient resouresheduling in data enters using MRIS,"// Indian J. Comput. Si.Eng. 2 (2011).5. M. Korupolu, A. Singh, and B. Bamba, "Coupled plaementin modern data enters,"// in IEEE Int. Symp. on Parallel &Distributed Proessing (IPDPS, New York, 2009), pp. 1-12.6. Y. Zhu and M. H. Ammar, "Algorithms for assigning substratenetwork resoures to virtual network omponents,"// in 25th Int.Conf. on Computer Communiations (INFOCOM), Barelona,2006, pp. 1-12.



Multiple objetive deisionmaking
Convolution methods for riteria of e�ienyand risk in the problem of investmentportfolio hoieV.A. Gorelik and T.V. ZolotovaDorodniyn Computing Centre, FRC CSC RAS, Finanial Universityunder the Government of the Russian Federation, Mosow, RussiaThe development of optimality riteria for a seurities portfolioinvolv- es solving the issue on the relationship between the return andrisk of the portfolio. In [4℄, Markowitz stated the problem on the seletionof an optimal portfolio as the problem of minimizing the di�erenebetween the variane and the expetation of the portfolio return. Inaddition, in the same book the problem of maximizing the expetedreturn under a onstraint on the variane is onsidered. The problemof minimizing the variane under the onstraint on the return is alsoonsidered. Solutions of all these problems are e�ient portfolios. In [2,3℄, the problem on portfolio seletion was onsidered as the problemof maximizing a linear onvolution of riteria �expetation�variane�with a weight fator (risk oe�ient). By the onvexity of the set ofattainable values for the expetation and variane of portfolios (in the�north-west� diretion) it gives neessary and su�ient onditions forthe Pareto optimality, i.e., any problem whose solution is an e�etiveportfolio is equivalent to a given problem at a ertain risk fator.In [1℄, we onsidered the problem of minimizing the onvolution of theratio type with the risk funtion de�ned in the metri l2 and the problem



Multiple objetive deision making 77of minimizing the probabilisti risk funtion. We also proposed a methodof redution of suh problems to problems of quadrati programming(for the problem of minimizing the probabilisti risk funtion underthe assumption of a normal distribution of random returns of �nanialinstruments).Here we onsider one of the possible statements, namely, we de�nean optimal portfolio as a solution of the problem of maximizing theexpetation of the portfolio return, provided that the probability of anegative random value of the portfolio return does not exeed a given,su�iently small value:
max
x

r̄x, P (rx ≤ 0) ≤ ε, xe = 1, x ≥ 0, (1)where ε is a given su�iently small positive value, e = (1, ..., 1), and Pis the probability, r̄ = (r̄1, ..., r̄i, ..., r̄n) is the vetor of expetations of�nanial instruments.We show that problem (1) is redued to a problem of onvex program-ming and its solution oinides with the solution of the problem ofmaximizing the linear onvolution of the riteria of the expetation andthe standard deviation of the random portfolio return for some weightoe�ient of the standard deviation. Consider the problem
max

x
r̄x, kr̄x ≥ (xKx)

1/2, xe = 1, x ≥ 0, (2)for whih the Lagrange funtion
L(x, λ) = r̄x + λ(kr̄x − (xKx)

1/2) (3)is de�ned on the setX = {x|xe = 1, x ≥ 0}, λ is the Lagrangemultiplier,
k is a positive oe�ient, K = (σij)n×n is the ovariane matrix.Lemma. If the onvex programming problem (2) has a solution x0and the orresponding Lagrange multiplier is positive, λ0 > 0, i.e.,
(x0, λ0) is a saddle point of the funtion (3), then x0 is a solution ofthe problem

max
x

[r̄x − λ0

1 + λ0k
(xKx)

1/2], xe = 1, x ≥ 0. (4)Theorem 1. Let {ri} be a system of random variables eah of whihhas a normal distribution, r̄i be the expetation, K = (σij)n×n be theovariane matrix, and let the onditions of the lemma hold. Then the



78 Multiple objetive deision makingsolution of problem (1) oinides with the solution of the problem ofmaximizing the linear onvolution of the riteria of the expetation andthe standard deviation of the random portfolio return:
max
x∈X

[r̄x − α1(xKx)
1/2], (5)where α1 = λ0

1+λ0d , d = (Φ−1(1−2ε))−1, Φ(·) is the Laplae funtion, λ0is the value of the Lagrange multiplier in problem (2).Now we �nd an optimal portfolio as a solution of the problemof maximizing the linear onvolution of the expetation and varianeriteria for the portfolio return with the weight oe�ient α > 0:
max

x
[r̄x − α(xKx)], xe = 1, x ≥ 0. (6)We examine the following problem: In whih ase solutions ofproblems (1) and (6) oinide?Theorem 2. Let x0 be a solution of problem (1), the optimal valueof the Lagrange multiplier in problem (2) is positive, λ0 > 0, and theovariane matrix K = (σij)n×n is strongly positive de�nite. Then thereexists a value of the weight oe�ient α in problem (6) suh that thesolutions of problems (1) and (6) oinide.Theorem 2 proves the existene of a value of the risk oe�ient αin problem (6) for whih solutions of problems (1) and (6) oinide.However, Theorem 2 allows one to �nd the risk oe�ient only by solving

min
x
xKx, r̄x ≥ r0p, xe = 1, x ≥ 0, (7)where r0p is the expeted return of a portfolio at the solution point ofproblem (1), i.e. r̄x0 = r0p. In the following assertion (Theorem 3), weobtain a value of the risk oe�ient α for full-size portfolios.Theorem 3. Let the onditions of Theorem 2 be satis�ed and leta solution of problem (1) be a full-size portfolio. If in problem (6) theweight oe�ient α satis�es the equation

4(1−
(

r̄K−1e
eK−1e

)2
d2)α2 − 4d2

(
r̄K−1e
eK−1e

)(
r̄K−1r̄ − (eK−1 r̄)2

eK−1e

)
α+

+
(
r̄K−1r̄ − (eK−1 r̄)2

eK−1e

)
− d2

(
r̄K−1r̄ − (eK−1 r̄)2

eK−1e

)2
= 0,where e = (1, ..., 1), r̄ is the vetor of expeted returns, d =

(Φ−1(1−2ε))−1, ε > 0, and Φ(·) is the Laplae funtion, then solutionsof problems (1) and (6) oinide.



Multiple objetive deision making 79Thus, if we use the model with a probabilisti risk funtion for thesearh for optimal portfolios, the results of this study make it possibleto determine the equivalent ratio of the investor to risk. Problem (6) isomputationally most onvenient; for the searh for an exat solution itis redued to a system of linear equations. The results obtained in thepresent paper allow one to solve problem (6) instead of (1) for ertainvalues of the parameters of these problems.Referenes1. Gorelik V.A., Zolotova T.V. Criteria for evaluation and the optima-lity of risk in omplex organizational systems. Mosow: CC RAS,2009.2. Gorelik V.A., Zolotova T.V. Some problems of the assessment oforrelation of returns in investment portfolios // Probl. Upravl.2011. â½� 3, P. 36�42.3. Gorelik V.A., Zolotova T.V. Stability riteria for the stok marketand their relationship with the awareness and the priniples ofinvestor behavior // Fin. Zh. 2013. â½� 3, P. 17�28.4. Markowitz H. M. Portfolio Seletion: E�ient Diversi�ation ofInvestment. � N.-Y.: Wiley, 1959.Composed methods to redue the Pareto set∗V.D. NoghinSaint Petersburg State University, Saint-Petersburg, RussiaThe paper deals with a multiriteria hoie problem, whih has inits setting a set of feasible alternatives X , a numerial vetor riterion
f = (f1, f2, . . . , fm) and a binary preferene relation ≻X of the DeisionMaker whih is de�ned on the set of alternatives and usually unknown.A set of seleted alternatives is denoted by C(X). This set is a solution ofthe multiriteria hoie problem and one must be determined at the endof deision making proess. Moreover, we introdue C(Y ) = f(C(X)).Let Y be a set of feasible vetors, i.e. Y = {y = f(x) | for some
x ∈ X}. By ≻Y we shall denote a preferene relation, de�ned on Y , andalso

y ≻Y y′ ⇐⇒ x ≻X x′ ∀ x ∈ x̄, ∀x′ ∈ x̄′, y = f(x), y′ = f(x′),

∗This researh is supported by the Russian Fund for Basi Researh (No 14-07-00746).



80 Multiple objetive deision makingwhere x̄, x̄′ are lasses of equivalene generated by the relation x ∼ x′ ⇔
f(x) = f(x′).We shall assume that the following four reasonable axioms areful�lled.Axiom 1 (exlusion of dominated alternatives). For any y, y′ ∈ Ythe following impliation y ≻Y y′ ⇒ y′ /∈ C(Y ) is true.Axiom 2 (transitivity). There exists an extension ≻ of the relation
≻Y on all spae Rm, and also ≻ is transitive.Axiom 3 (ompatibility). For i = 1, 2, . . . ,m and for any two vetors
y, y′ ∈ Rm suh that

yk = y′k, ∀k 6= i, yi > y′iit follows that y ≻ y′.Axiom 4 (invariane with respet to linear positive transformation).For any y, y′ ∈ Rm and arbitrary α > 0, c ∈ Rm the impliation
y ≻ y′ ⇒ (αy + c) ≻ (αy′ + c)is true.We shall say [1℄ that a quantum of information about the preferenerelation ≻ with two groups of riteria A,B and positive parameters

wi (∀i ∈ A), wj (∀j ∈ B) is given if for any y, y′ ∈ Rm suh that
yi − y′i = wi (∀i ∈ A), y′j − yj = wj (∀j ∈ B), ys = y′s (∀s /∈ (A ∪ B)))the relation y ≻ y′ holds.Theorem 1.Let X ⊂ Rm be a onvex set and a vetor-funtion
f be onave on it. Assume that we have a quantum of informationabout the preferene relation with two groups of riteria A,B and theorresponding positive parameters. Then for any set of seleted vetors
C(Y ) the inlusion
C(Y ) ⊂ Closure(

⋃

µ∈M

{f(x∗) ∈ Y |
p∑

i=1

µigi(x
∗) = maxx∈X

p∑

i=1

µigi(x)})is true, where M = {µ ∈ Rp|µi > 0 ∀i, ∑p
i=1 µi = 1} and p = m −ard(B) + ard(A)ard(B) omponents of g onsist of gi = fi ∀i /∈

B, gij = wjfi + wifj ∀i ∈ A and ∀j ∈ B.Theorem 2.Let X ⊂ Rm be a onvex set and a vetor-funtion fbe bounded above and onave on it. Assume that we have a quantum ofinformation about the preferene relation with two groups of riteria A,B



Multiple objetive deision making 81and the orresponding positive parameters. Then for any set of seletedvetors C(Y ) the inlusion
C(Y ) ⊂ Closure(

⋃

u∈U

{f(x∗) ∈ Y |‖u− g(x∗)‖ = minx∈X‖u− g(x)‖})is true, where U = {u ∈ Rp|ui > supx∈Xgi(x) for i = 1, 2, . . . , p} and gis the same as in Theorem 1.Remark 1. It must be noted that for polyhedral onave vetor-funtion f and polyhedral set Y the operation 'Closure' may be omittedin above theorems.Theorem 3. Let f be an arbitrary m-dimensional numerial vetor-funtion de�ned on arbitrary set X . Assume that α ∈ R and we have aquantum of information about the preferene relation with two groups ofriteria A,B and the orresponding positive parameters. Then for anyset of seleted vetors C(Y ) the inlusion
C(Y ) ⊂

⋃

u∈U

{f(x∗) ∈ Y |maxi=1,2,...,p‖ui − gi(x
∗)‖ =

= minx∈Xmaxi=1,2,...,p‖ui − gi(x)‖}is true, where U = {u ∈ Rp|∑i=1,2,...,p ui = α} and g is the same as inTheorem 1.Remark 2.All above results take plae in general ase when we havemore than one quantum of information. Namely, a vetor-funtion g maybe obtained after taking into aount not only one quantum but some�nite olletion of onsistent information quanta about the preferenerelation. In this ase the equality p = m − ard(B) + ard(A)ard(B)may be false. For more details about using an arbitrary olletion ofinformation quanta see [1-3℄. Referenes1. Noghin V.D. Reduing of the Pareto Set: an Axiomati Approah.Mosow: FIZMATLIT, 2016 (in Russian)2. Noghin V.D., Baskov O.V. Pareto Set Redution Based on anArbitrary Finite Colletion of Numerial Information on thePreferene Relation // Doklady Mathematis, 2011. V. 83, No.3. P. 418�420.3. Noghin V.D. Reduing of the Pareto Set Algorithm Based on anArbitrary Finite Set of Information �Quanta� // Sienti� andTehnial Information Proessing, 2014. V. 41, No 5. P. 1-5.



82 Multiple objetive deision makingMultiriteria optimization problem withdynamis∗F.P. Vasiliev, A.S. Antipin, and L.A. ArtemyevaLomonosov Mosow State University, Dorodniyn Computing Centre ,Mosow, RussiaThe linear optimal ontrol problem with the �xed initial state andboundary ondition in the form of a �nite-dimensional multiriteriaequilibrium problem is onsidered. This problem an be formulated inthe following way [1℄:it is needed to �nd the ontrol u ∈ U and a vetor λ ∈ Em
+ satisfyingthe onditions:

〈λ, f(x(t1;u))〉 → inf, (1)
〈µ− λ, f(x(t1;u))− λ〉 6 0, ∀ µ ∈ Em

+ , (2)where
ẋ(t) = D(t)x(t) +B(t)u(t) + g(t), t0 6 t 6 t1, x(t0) = x0, (3)Here f(x) = (f1(x), . . . , fm(x)), x ∈ En � is the given vetor-funtionwith onvex, di�erentiable oordinates f i(x), i = 1, . . . ,m, D(t),

B(t), g(t) � matries of orresponding sizes with pieewise ontinuouselements, t0, t1 � �xed time moments, x0 ∈ En � �xed initial state,
u = u(t) ∈ Lr

2[t0, t1] � ontrol, x = x(t;u) = (x1(t), . . . , xn(t)),
t0 6 t 6 t1 � system (3) trajetory, orresponded to the ontol u(t).To �nd the solution of the problem (1)�(3) the extragradient method[2℄ is proposed and examined.Referenes1. Antipin A.S., Khoroshilova E.V. Multiriteria boundary valueproblem in dynamis // Trudy Instituta Matematiki I Mekhaniki.2015. V. 21, � 3. P. 20�29. (In Russian)2. Vasiliev F.P. Optimization Methods. Mosow: MCCME, 2011.

∗This researh is supported by RFBR (projet 15-01-06045-à).



OR in eonomis
Threshold strategiesin investor's behavior model∗V.I. Arkin and A.D. SlastnikovCentral Eonomis and Mathematis Institute, Mosow, Russia1. One of the fundamental problems of investing in real setoronerns the determination of optimal time for investment into a givenprojet (see, e.g., lassial monograph [1℄).The projet is spei�ed by the pair (πt, t ≥ 0, I) where πt isthe revenue from the projet at time t, and I means the amount ofinvestment required to implement the projet. Pries on input andoutput prodution are assumed to be stohasti, so πt is onsideredas a stohasti proess, de�ned at a probability spae with �ltration

(Ω,F , {Ft, t ≥ 0},P).At any time an investor an either aept the projet and proeed withthe investment or delay the deision until he obtains new informationregarding its environment (pries of the produt and resoures, demandet.). The goal of an investor in this situation is to �nd, usingthe available information, an optimal time for investing the projet(investment timing problem), whih maximizes the net present valuefrom the projet:
E

(∫ ∞

τ

πse
−ρsds− Ie−ρτ

)1{τ<∞} → max
τ
, (1)where 1A is the indiator of A, and maximum is taken over all investmenttimes τ .

∗This researh is supported by Russian Foundation for Basi Researhes (projet15-06-03723).



84 OR in eonomisThe majority of results on this problem (optimal investment strategy)has a threshold struture: to invest when present value from the projetexeeds the ertain level (threshold). In the heuristi level this isso for the ases of geometri Brownian motion, arithmeti Brownianmotion, mean-reverting proess and some other (see [1℄). And the generalquestion arises: For what underlying proesses an optimal deision toan investment timing problem will have a threshold struture? Somesu�ient onditions in this diretion was obtained in [2℄.If we denote Xt = E

(∫ ∞

t

πse
−ρ(s−τ)ds

∣∣∣∣Ft

) � present value of theprojet, implemented at the time t, then investment timing problem (1)an be viewed as a speial ase of optimal stopping problem:
Ex (Xτ − I) e−ρτ1{τ<∞} → max

τ
,where Ex means the expetation for the proess Xt starting from theinitial state x, and the maximum is onsidered over all stopping times τ .Therefore, the question about a struture of optimal deision may beaddressed to a general optimal stopping problem. Under what onditions(on both proess and payo� funtion) an optimal stopping time willhave a threshold struture? Some results in this diretion (in the formof neessary and su�ient onditions) were obtained in [3,4℄ under someadditional assumptions on underlying proess and/or payo�s.2. Let Xt be a di�usion proess with values in the interval withboundary points l and r, where −∞ ≤ l < r ≤ +∞, open or losed (i.e.it may be (l, r), [l, r), (l, r], or [l, r]), whih is a solution to stohastidi�erential equation:

dXt = a(Xt)dt+ σ(Xt)dwt, X0 = x,where wt is a standard Wiener proess. Assume that a(·), σ(·) areontinuous funtions, and σ(x) > 0 for all x ∈ (l, r). Under theseassumptions the proessXt will be regular, i.e. starting from an arbitrarypoint x, the proess reahes any point y in �nite time with positiveprobability.It is known that under the above assumptions there exist (uniqueup to onstant positive multipliers) inreasing and dereasing positivefuntions ψ(x) and ϕ(x), whih are the fundamental solutions to theODE
a(x)f ′(x) +

1

2
σ2(x)f ′′(x) = ρf(p) (2)



OR in eonomis 85on the interval (l, r).Let us de�ne a threshold stopping time τp = inf{t≥0 : Xt ≥ p} �the �rst time when the proess Xt exeeds level p.Theorem 1. Threshold stopping time τp∗ , p∗∈(l, r), is optimal in theinvestment timing problem (1) for all x∈ (l, r) if and only if the followingonditions hold:
(p− I)ψ(p∗) ≤ (p∗ − I)ψ(p) for p < p∗; (3)

ψ(p∗) = (p∗ − I)ψ′(p∗);

a(p) ≤ ρ(p− I) for p > p∗,where ψ(x) is an inreasing solution to ODE (2).3. As Theorem 1 shows, under ertain assumptions the optimalinvestment rule in problem (1) an be found over the lass of all thresholdstopping times {τp, p ∈ (l, r)}. For this lass the investment timingproblem (1) an be written as follows:
(p− I) Exe−ρτp → max

p∈(l,r)
. (4)The following result gives neessary and su�ient onditions foroptimal threshold.Theorem 2. Threshold p∗ ∈ (l, r) is optimal in the problem (4) forall x ∈ (l, r), if and only if the onditions (3) and

(p− I)/ψ(p) does not inrease for p ≥ p∗,hold, where ψ(p) is an inreasing solution to ODE (2).Referenes1. Dixit A., Pindyk R.S. Investment under Unertainty. Prineton:Prineton University Press, 1994.2. Alvarez L.H.R. Reward funtionals, salvage values, and optimalstopping // Math. Methods Oper. Res. 2001. V. 54, P. 315�337.3. Arkin V.I. Threshold Strategies in Optimal Stopping Problem forOne-Dimensional Di�usion Proesses // Theory Probab. Appl.2015. V. 59. P. 311�319.4. Croe F., Mordeki E. Expliit solutions in one-sided optimalstopping problems for one-dimensional di�usions // Stohastis.2014. V. 86. P. 491�509.



86 OR in eonomisThe uni�ed maximum priniple for optimaleonomi growth problems∗S.M. AseevSteklov Mathematial Institute, Mosow, RussiaLet G be a nonempty open onvex subset of Rn and let
f : [0,∞)×G× R

m → R
n and f0 : [0,∞)×G× R

m → R
1.The following problem (P ) arise in many �elds of eonomis, inpartiular in growth theory (see [1℄):

J(x(·), u(·)) =
∫ ∞

0

f0(t, x(t), u(t)) dt → max, (1)
ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (2)

u(t) ∈ U(t). (3)Here x(t) ∈ R
n and u(t) ∈ R

m are the values of the state vetor and theontrol vetor at time t ≥ 0, respetively, x0 ∈ G is the initial state and
U : [0,∞) ⇉ R

m is a multivalued mapping with nonempty values.Assume that for a.e. t ∈ [0,∞) the derivatives fx(t, x, u) and
f0
x(t, x, u) exist for all (x, u) ∈ G × R

m, and the funtions f(·, ·, ·),
f0(·, ·, ·), fx(·, ·, ·), and f0

x(·, ·, ·) are Lebesgue-Borel (LB) measurable in
(t, u) for every x ∈ G, and ontinuous in x for almost every t ∈ [0,∞)and every u ∈ R

m. The multivalued mapping U(·) is also assumed to be
LB-measurable, i.e. the set grU(·) = {(t, u) ∈ [0,∞) × R

m : u ∈ U(t)}is a LB-measurable subset in [0,∞)× R
m.By de�nition, (x(·), u(·)) is an admissible pair in problem (P ) if u(·)is a Lebesgue measurable funtion satisfying (3) for all t ≥ 0, x(·) isthe orresponding to u(·) loally absolutely ontinuous solution of theCauhy problem (2) on [0,∞) in G, and the funtion t 7→ f0(t, x(t), u(t))is loally integrable on [0,∞). Thus, for an arbitrary admissible pair

(x(·), u(·)) and any T > 0 the integral
JT (x(·), u(·)) :=

∫ T

0

f0(t, x(t), u(t)) dtis well de�ned. An admissible pair (x∗(·), u∗(·)) is optimal in problem
(P ) if the orresponding improper integral in (1) onverges (to a �nite

∗This researh is supported by the Russian Siene Foundation under grant 14-50-00005.



OR in eonomis 87number) and the following inequality holds for any other admissible pair
(x(·), u(·)):

J(x∗(·), u∗(·)) ≥ lim sup
T→∞

∫ T

0

f0(t, x(t), u(t)) dt.Following [3], we will impose the following onditions on admissiblepairs (x∗(·), u∗(·)) in problem (P ).
(A1) There exists a ontinuous funtion γ : [0,∞) 7→ (0,∞) and aloally integrable funtion ϕ : [0,∞) 7→ R

1 suh that {x : ‖x − x∗(t)‖ ≤
γ(t)} ⊂ G for all t ∈ [0,∞) and

max
{x : ‖x−x∗(t)‖≤γ(t)}

{
‖fx(t, x, u∗(t))‖ + ‖f0

x(t, x, u∗(t))‖
} a.e.

≤ ϕ(t).

(A2) There exists a number β > 0 and a nonnegative integrablefuntion λ : [0,∞) 7→ R
1 suh that for all ζ ∈ G, satisfying the inequality

‖ζ − x0‖ < β, the initial value problem (2) with u(·) = u∗(·) and theinitial ondition x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·)on [0,∞) in G and
max

x∈[x(ζ;t),x∗(t)]

∣∣∣〈f0
x(t, x, u∗(t)), x(ζ; t) − x∗(t)〉

∣∣∣
a.e.
≤ ‖ζ − x0‖λ(t).If (x∗(·), u∗(·)) is an admissible pair satisfying onditions (A1) and

(A2) then the fundamental matrix solution Z∗(·) of the linear system
ż(t) = −fx(t, x∗(t), u∗(t)) z(t), t ≥ 0,with initial ondition Z∗(0) = I where I is the identity matrix is wellde�ned on [0,∞).Let (x∗(·), u∗(·)) be an admissible pair that satis�es (A1) and (A2),and suh that the funtional (1) onverges. Then without loss ofgenerality one an assume that there is a neighborhood Ω ⊂ [0,∞)×Gof the set grx∗(·) = {(t, x∗(t)) : t ≥ 0}, suh that for all (t, ζ) ∈ Ω thereis a solution x(ζ, t; ·) of the Cauhy problem
ẋ(s) = f(s, x(s), u∗(s)), x(t) = ζ,on [0,∞) in G, and for all (t, ζ) ∈ Ω the integral
W (t, ζ) =

∫ ∞

t

f0(s, x(ζ, t; s), u∗(s)) ds



88 OR in eonomisonverges. Notie, that the meaning ofW (t, ζ) is the onditional value ofthe apital stok ζ at time t under a given investment plan u∗(·) (see [2℄).De�ne the normal form Hamilton-Pontryagin funtion H : [0,∞) ×
G× R

m × R
n → R

1 for problem (P ) in the usual way:
H(t, x, u, ψ) = f0(t, x, u)+〈f(t, x, u), ψ〉, t ≥ 0, x ∈ G, u ∈ R

m, ψ ∈ R
n.The following result uni�es the normal form version of the Pontryaginmaximum priniple for problem (P ) developed in [3℄ with the Hamilton-Jaobi-Bellman equation without any a priory regularity assumptions onthe value funtion (see [2℄ for details).Theorem 1. Let (x∗(·), u∗(·)) is an optimal admissible pair inproblem (P ) that satis�es onditions (A1) and (A2). Then(i) the partial (Fréhet) derivative Wx(t, x∗(t)) exists for all t ≥ 0,and

Wx(t, x∗(t)) = Z∗(t)

∫ ∞

t

Z−1
∗ (s)f0

x(s, x∗(s), u∗(s)) ds, t ≥ 0;(ii) the partial derivative Wt(t, x∗(t)) exists for a.e. t ≥ 0, and
Wt(t, x∗(t))+

+ sup
u∈U(t)

{
〈Wx(t, x∗(t)), f(t, x∗(t), u)〉+ f0(t, x∗(t), u)

} a.e.
= 0;(iii) the vetor funtion t 7→ ψ(t) = Wx(t, x∗(t)), t ≥ 0, is loallyabsolutely ontinuous and satis�es the ore relations of the normalform maximum priniple for problem (P ):

ψ̇(t)
a.e.
= −Hx(t, x∗(t), u∗(t), ψ(t)),

H(t, x∗(t), u∗(t), ψ(t))
a.e.
= sup

u∈U(t)

H(t, x∗(t), u, ψ(t)).Referenes1. Aemoglu D. Introdution to modern eonomi growth, PrinetonN.J.: Prineton Univ. Press, 2008.2. Aseev S. M. Adjoint variables and intertemporal pries in in�nite-horizon optimal ontrol problems // Proeedings of the SteklovInstitute of Mathematis, 2015. V. 290. P. 223�237.



OR in eonomis 893. Aseev S. M., Veliov V. M. Maximum priniple for in�nite-horizonoptimal ontrol problems under weak regularity assumptions //Proeedings of the Steklov Institute of Mathematis, 2015. V. 291.Suppl. 1. P. S22�S39.Fresh look at fair division problems: asewith a massive disrete omponent∗M.L. BlankRussian Aademy of Si. Inst. for Information TransmissionProblems,and National Researh University Higher Shool ofEonomis, Mosow, RussiaOne of very basi problems of mathematial eonomis is the questionof fair distribution of various types of resoures between agents withdi�erent subjetive estimates of the resoures. Typial examples are ake-utting, hore-division or an apartment rent-partitioning. In the mostgeneral form the fair division means that in the result of the divisionthe share of eah agent is �not worse� than others. However, dependingon the exat mathematial formalization of the word �worse�, the results(and even the existene of the solution) might be very di�erent. There isa vast mathematial literature dediated to these matters, see e.g. [1�7℄and further referenes in these publiations.We introdue the notions of weak and strong solutions to the problemof fair division, generalizing the notions of �proportional� and �envy-free�notions used in the eonomis literature, and apply them for the analysisof the division of a resoure having a massive disrete omponent, e.g.preious stones. Due to the omplexity of the latter problem no approahto its solution exists in the literature.Indeed, if the resoure under division onsists only of a number ofstones of di�erent pries there is no way to make a fair division. Thesituation hanges if additionally there is a ontinuous omponent, e.g.some amount of money. Obviously this amount annot be too small inorder to make a hange. We give neessary and su�ient onditions forthe existene of weak and strong solutions for the fair division problemin terms of individual subjetive estimates of the stones pries made byeah of the agents and the total amount of money. The proof of thisresult is based on an expliit �nite onstrutive algorithm of �nding thesolutions.
∗This researh is supported by RFBR and RNF grants.



90 OR in eonomisAn appliation of above mentioned ideas for the apartment rent-partitioning problem may be found in [8℄.Referenes1. Steinhaus H. The problem of fair division // Eonometria, 16(1)(1948), P. 101�104.2. Brams S.J., Mihael A.J.,Klamler C. Better Ways to Cut a Cake// Noties of the Amerian Mathematial Soiety 53 (11) (2006),P. 1314�1321.3. Moulin H. Fair division and olletive welfare. Cambridge: MITPress, 2003.4. Brams S.J. Mathematis and demoray: Designing better votingand fair division proedures. Prineton, N.J.: Prineton UniversityPress, 2008.5. Barbanel J., Brams S.J., and Stromquist W., Cutting a pie is nota piee of ake // Amerian Mathematial Monthly 116 (2009),P. 496�514.6. Su F.E. Rental Harmony: Sperner's Lemma in Fair Division //Amerian Mathematial Monthly 106:10 (1999), P. 930�942.7. Stromquist W. Envy free ake divisions annot be found by �niteprotools // Eletroni Journal of Combinatoris 15(1) (2008),R11.8. Blank M. Problem of a fair division of a hybrid resoure //Problems of Information Transmission, (to appear).The asymptoti solution of one problem ofeonomi dynamis with turnpike propertiesof optimal trajetories∗Yu.E. Danik and M.G. DmitrievInstitute of system analysis of Russian Aademy of Sienes, NationalResearh University �Higher Shool of Eonomis�, Mosow, RussiaIn this work the algorithm for the onstrution of approximatedoptimal solution of problems of eonomi dynamis where trajetorieshave turnpike harater is proposed. At �rst the similar approah wasdesribed in [1℄. This approah is based on the singular perturbationstheory and allows to �nd zero uniform optimal ontrol asymptoti appro-ximations that lead to balaned growth trajetories for the eonomi
∗This researh is supported by the Russian Foundation for Basi Researh (ProjetNo. 15�01-06192 and projet No. 15-29-06053).



OR in eonomis 91growth model whih ombines the properties of dynamial models ofLeontief and Neumann. Let us onsider the disrete time dynami modelsof the eonomi system [2℄ where the time step µ is a small parameter.The dynami Leontief model of a multisetor eonomy has the form
x(t) = Ax(t) +B[x(t+ µ)− x(t)] + d(t), x(0) = x0,
t ∈ Tµ = {t : t = kµ, k = 0, 1, ..., (N − 1), 0 < µ << 1} (1)The von Neumann growth model may be presented as follows
x(t+ µ) = x(t) + (B∗ −A∗)u(t), x(0) = x0, t ∈ Tµ, (2)If we ombine models (1) and (2) and take the terminal riterion weget the following modi�ed singular perturbed problem
Pµ : J(u) = (x(T )− xfix)

TF (x(T )− xfix) → min
u

(3)
x(t+ µ) = Ax(t) + (E +B)(B∗ −A∗)u(t) + d(t), x(0) = x0 (4)

A∗u(t) ≤ x(t), u(t) ≥ 0, x(t) ≥ 0 (5)where x(t) � n-dimensional vetor of output levels, F = FT > 0, An×nis the Leontief input-output matrix, Bn×n is the matrix of apital oe�-ients, ui(t) ≥ 0, u(t) = (u1(t), ..., ur(t)) � prodution intensities vetorduring period [t, t+µ], t ∈ Tµ, j = 1, r, A∗m×r and B∗m×r � nonnega-tive input and output matries for the unit of prodution intensities,respetively, (B∗ −A∗)u(t) � net output vetor at the end of the period
[t, t + µ], d(t) = βtd(0) � vetor of �nal demand, β ≥ 0 � the balanedgrowth rate of onsumption. System (4) an be interpreted as a dynamibalane equation, where the total output at the beginning of the nextperiod must equal the sum of the onsumption volume d(t), the neessaryinvestments in funds B(B∗ − A∗)u(t) required for the prodution of aseleted amount of net output (B∗ −A∗)u(t) and the osts Ax(t) of thetehnologial proesses funtioning. The onstraint (5) is taken from thevon Neumann model. The riterion (3) is used to selet admissible pairs
(x(t), u(t)) that will ensure the best approximation to a ertain spei�edtarget (xfix) at the �nal time.The proposed algorithm for the onstrution of zero uniform optimalontrol asymptoti approximations is based on the diret sheme of theboundary funtions method [3,4℄, whih is used to �nd the asymptotiapproximation to the solution of problem (3)-(5) as the sum of thethree series z(t, µ) = z̄(t, µ) + Πz(τ0 , µ) + Qz(τ1 , µ), z =

(
x
u

).



92 OR in eonomisThe series z̄(t, µ) is the regular series with oe�ients depending on tand Πz(τ0 , µ), Qz(τ1 , µ) - boundary layer series with the oe�ientsdepending on τ0 = t
µ , τ1 = t−T

µ . It is assumed that terms of theboundary layer series have exponential estimates.The steps of the algorithm are:1) Substitute the power series expansion in the left and right handsides of (3)-(5) and then equate the terms with the zero power of µseparately for the terms with t, τ0, τ1 to get three deomposition prob-lems P0, Π0� , Q0P for the identi�ation of the zero terms of the ontroland state approximations.2) From problem P0 �nd the turnpike part of the trajetory x̄0(t) =
(E −A)−1d(t) and the ontrol funtion ū0(t) = c(t)uA, where uA is theeigenvetor of matrix (B∗ − A∗) orresponding to the zero eigenvalue,and c(t) is an unknown salar funtion. The following onditions mustbe satis�ed A∗ū0(t) ≤ x̄0(t), ū0(t) ≥ 0, x̄0(t) ≥ 0 .3) Near the initial point we get the problem Π0� as a system ofinequalities for Π0u(τ0) and Π0x(τ0): A∗(c(t)uA + Π0u(τ0)) ≤ (E −
A)−1d(t) + Π0x(τ0), c(t)uA ≥ 0, (E − A)−1d(t) + Π0x(τ0) ≥ 0,
c(t)uA + Π0u(τ0) ≥ 0, Π0x(τ0) = Aτ0Π0x(0) +

∑τ0−1
s=0 Aτ0−s−1(E +

B)(B∗ −A∗)Π0u(s), Π0x(0) = x0 − (E −A)−1d(0).4) Near the �nal point we have the next optimal ontrol problem
J(u) = (x̄0(T ) + Q0x(0) − xfix)

TF (x̄0(T ) + Q0x(0) − xfix) →
min

Q0u(τ1),Q0x(0)
A∗(c(t)uA+Q0u(τ1)) ≤ (E−A)−1d(t)+Q0x(τ1), c(t)uA+

Q0u(τ1) ≥ 0, (E −A)−1d(t) +Q0x(τ1) ≥ 0,
Q0x(τ1) = Aτ1(xfix − x̄0(1))−

∑−1
s=τ1

Aτ1−s−1(E+B)(B∗ −A∗)Q0u(s).It should be noted that due to the nature of the riterion (3), problems
P0 and Π0P do not have a riterion, moreover, not for all elements of thesolution of problems P0, Π0P and Q0P a single value an be obtained.5) Finally, as all of the desribed deomposition problems depend onone unknown disrete funtion c(t), the following problem is solved
J(u, t, µ, c(t)) = (x(T, u0(t, µ, c(t)))−xfix)TF (x(T, u0(t, µ, c(t)))−xfix)
→ min

u0(t,µ,c(t))

ū0(t, c(t)) + Π0u(c(t),
t
µ ) +Q0u(c(t),

t−T
µ ) ≥ 0, c(t) ≥ 0, ∀t,

x̄0(t) + Π0x(Π0u,
t
µ ) + Q0x(Q0u,

t−T
µ ) ≥ 0, A∗u0(t, µ, c(t)) ≤ x̄0(t) +

Π0x(Π0u,
t
µ ) +Q0x(Q0u,

t−T
µ ).For numerial alulations a small disrepany funtional (regularizator)an be additionally introdued in the riterion (3) to �nd the admissibleontrols.



OR in eonomis 936) If there exist c(t) and Π0u(c(t), τ0), Q0u(c(t), τ1) suh that theproblems onstraints are satis�ed, we get optimal trajetory approxi-mation x(t, u0(t, µ, c(t))) from (4).Thus, for the problem approximate solution the initial ontrolproblem (3)-(5) is redued to the onstrution of the zero uniformoptimal ontrol asymptoti approximation. For su�iently small µ theproposed algorithm gives a good approximation of the solution andrequires less alulations in omparison with the diret solution ofproblem (3)-(5) as a disrete optimal ontrol problem.Referenes1. Danik Yu.E., Dmitriev M.G. Turnpike trajetories and singularperturbations // Trudy Instituta sistemnogo analiza RAN. 2012.V. 65, � 1. P. 60�67. (in Russian)2. Al'sevih V.V. Vvedenie v matematiheskuju jekonomiku.Konstruktivnaja teorija: Uhebnoe posobie. Mosow: Knizhnyjdom ¾LIBROKOM¿, 2009. (in Russian)3. Dmitriev M.G. Singular-perturbation theory and some optimal-ontrol problems // Di�erential equations. 1985. V. 21, � 10.P. 1132�1136.4. Vasil'eva A.B., Dmitriev M.G. Singular perturbations in optimalontrol problems // Journal of Soviet Mathematis. 1986. V. 34,� 3. P. 1579�1629.Deterministi queuing system∗V.V. Karelin, V.M. Bure, and A.N. El�movSaint Petersburg State University, Saint Petersburg, RUSSIAConsider a deterministi queuing system whih ontains a singleserving unit with three streams of appliations. Speeds of reeipt ofappliations as well as speeds of handling of appliations by a serviedevie depend on the quantity of the queue. At any moment the serveran handle only one appliation. Servie systems of suh type haveproliferated in reent years. For example, in various servie enters anuser of a terminal devie hooses the queue number in aordane withthe type of his appliation, then obtains a number in the hosen queuefor servie. The servie omes with using a multifuntional operatingdevie, whih swithes from one queue to another during an operation
∗This researh is supported by the Saint Petersburg State University grant9.38.205.2014.



94 OR in eonomisand wherein moments of swithing are hosen by the servie devie. Theformulated problem is similar to the well-known problem of the ontrol oftra� lights at an isolated intersetion [1℄ � [4℄, but signi�antly di�ersfrom it by the nature of the restritions, in partiular, it is generallyassumed that the time of servie in the problem of the intersetion isequal to zero. Under the problem of managing suh a system it is possibleto understand the hoie of the swithing proedure of a serviing deviewith one queue to another, guaranteeing that there is no unlimitedgrowth of the queue on eah streams of appliations. A similar problemwith two streams was onsidered earlier in [4℄.Introdue the following notation: Let q1(t), q2(t), q3(t) be queuelengths waiting for servie of a multifuntional devie for the �rst, seondand third streams at the time t respetively. Let ai(t) è di(t) be speedsof reeipt and ful�llment orders for the i-th line, respetively, where
i = 1, 2, 3. Let gi be the duration of ontinuous servie of requests fromthe queue with the number i, gi > 0 (i = 1, 2, 3)Let's assume that:1) ai(t) = ai ≥ 0 is a known onstant;2) qi(t) is a non-negative integer (the number of requests in the queuefor servie �ow i at time t).3)
di(t) =





0, if the devie supports an appliation fromthe queue j 6= i ;
di, if the devie supports an appliation from the queue i ;4) di > ai, note that in the framework of our problem these quantitiestake onstant values.5) In the initial moment of time the queue is absent, i.e. qi(0) = 0, i =

1, 2, 3.6) Let the duration of ontinuous servie requests from the samequeue put the same for eah of the queues.De�nition 1. The triple (g1, g2, g3) is alled a yle, where gi islengths of ontinuous servie requests from the queue with the number i(i = 1, 2, 3)Let us onsider three sequenes of time points. The �rst sequene:
τ
(1)
1 = g1, τ

(1)
2 = g1+g2+g3+g1, . . . , τ

(1)
k+1 = (g1+g2+g3)k+g1, . . . .This sequene of time points represents the points of start of servierequests from the queue with the number two or the time of terminationof the implementation of the requirements of the �rst stream.



OR in eonomis 95The seond sequene:
τ
(2)
1 = g1 + g2, τ

(2)
2 = g1 + g2 + g3 + g1 + g2, . . . ,

τ
(2)
k+1 = (g1 + g2 + g3)k + g1 + g2, . . . .The seond sequene of time points represents the points of start ofservie requests from the queue with the number three, or the time oftermination of the implementation of the requirements of the seondstream.The third sequene:

τ
(3)
1 = g1 + g2 + g3, τ

(3)
2 = g1 + g2 + g3 + g1 + g2 + g3, . . . ,

τ
(3)
k+1 = (g1 + g2 + g3)(k + 1), . . . .The third sequene of time points represents points of start of servierequests from the queue with the number one, or the time of terminationof the implementation of the requirements of the third stream. Let'sintrodue a notation for the initial time: τ (0)0 = 0 is the start time of theMFD (a reeiption of �rst request for servie).De�nition 2. Suh regime of servie appliations in whih there willbe aumulation of the queue i.e., the following onditions

q1

(
τ
(1)
k+1

)
= 0, q2

(
τ
(2)
k+1

)
= 0, q3

(
τ
(3)
k+1

)
= 0 ∀k = 0, 1, 2, . . . .hold is alled a stationary regime.Now we �nd out onditions when the yle (g1, g2, g3) will lead to thestationary regime:Theorem 1. A yle (g1, g2, g3) generates a stationary regime if andonly if when the following inequalities

d1 − a1
a1

≥ g2 + g3
g1

;
d2 − a2
a2

≥ g1 + g3
g2

;
d3 − a3
a3

≥ g1 + g2
g3hold.This theorem is proved similarly to the �rst Theorem from [4℄. Asopposed to Theorem from [4℄ in this theorem the question of the existeneof a stationary regime for a servie system with harateristis of di, ai(i = 1, 2, 3, . . . ) is not obvious. The following theorem gives an answerof this question.



96 OR in eonomisTheorem 2. Let q1(0) = q2(0) = q3(0) = 0. The yle (g1, g2, g3)generating a stationary regime exists if and only if when the followingonditions
d1 − a1
a1

>
a2

d2 − a2
;
d3 − a3
a3

>
a2

d2 − a2
;

d3 − a3
a3

>
a1

d1 − a1
;
d3
a3

≥ d1d2
d1d2 − d1a2 − d2a1hold. Referenes1. Aboudolas K., Papageorgiou M., Kosmatopoulos E., Store-and-forward based methods for the signal ontrol problem in large-saleongested urban road networks // Transportation Researh PartC: Emerging Tehnologies 2008. V. 17, � 2. P. 163�1742. Diakaki C., Papageorgiou M., Aboudolas K. A multivariableregulator approah to tra�-responsive networkwide signalontrol. // Control Engineering Pratie. 2002. � 10. P. 183�195.3. Gazis D., Potts R. The oversaturated intersetion // Proeedingsof the International Symposium on the Theory of Tra� Flow.London: Elsevier. 1963. P. 221�227.4. Haddad J., Mahalel D., Ioslovih I., Gutman P.-O. Constrainedoptimal steady-state ontrol for isolated tra� intersetions //Control Theory Teh. 2014. V. 12, � 1. P. 84�94.Superhedging of Amerian options in aninomplete {1, S̄}-markets (disrete time,�nal horizon)V. Khametov and E. ShelemekhHSE University, CEMI RAS, Mosow, RussiaThere are many works devoted to the problem of Amerian option'spriing in inomplete markets. For example, artiles by Yu.M. Kabanov,V. I. Arkin, D.O. Kramkov, I.M. Sonin, A.N. Shiryaev, H. F�ollmer,A. Shied, W. Shahermayer, F. Delbaen, R. Merton and other authors.There in the artiles they have found onditions, when a solution existsfor the problem in dynami and stati formulations. In the ase ofdynami formulation this onditions are based on existene of uniformDoob deomposition (works by A.N. Shiryaev, H. F�ollmer, A. Shied).In stati ase onditions of solution's existene for diret and "dual"



OR in eonomis 97variational problems were used (W. Shahermayer, F. Delbaen). Butno methods to onstrut portfolio were proposed. This presentationdi�ers from other works beause we use minimax approah to solve theproblem of Amerian option priing in an inomplete market in dynamiformulation. This approah enabled us to give a onstrutive desriptionof superhedging portfolio and optimal exerise moment.1. Formulation of the problem. Suppose, there is a stohastibasis (Ω,F , (Fn)n≥0,P) and d-dimensional (d < ∞) adapted randomsequene {Sn}n≥0 on it. A market onsisting of one risk-free asset withonstant prise 1 and of d risky assets with prises evolving as {Sn}n≥0is alled {1, S̄}-market [1℄. Let us denote: 1) Sn
0 , (S0, ..., Sn), n ≥ 0;2) N ∈ N

+ is a horizon; 3) RN , {Q : Q ∼ P}; 4) MN , {Q :
EQ[Sn+1|Fn] = Sn, n ≥ 0}, where EQ[·|Fn] is the onditional expetationwith respet to measure Q and σ-algebra Fn. It is well known [1℄, thatmeasure Q ∈ RN spei�es market and {1, S̄}-market is inomplete if andonly if RN ∩MN 6= ∅. We suppose that RN ∩MN 6= ∅ and there is no"frition" in {1, S̄}-market.Let T N

n be a set of stopping moments τ taking values in the set
{n, ..., N} and {fn}0≤n≤N is an adapted sequene of bounded randomvariables. Amerian option is a ontrat between the Seller and theBuyer: 1) the Seller sales the right (the option) to buy from him orto sell him risky assets at any moment τ (hosen by the Buyer) at�xed onditions {fn}0≤n≤N (dynami payo� of Amerian option); 2) theBuyer exerises option, i.e. the Seller buys or sells risky assets aordingthe ontrat. To onlude the ontrat the Buyer pays the Seller fairvalue of the option. The Seller forms a portfolio of one risk-free and drisky assets π , {β, γ} [1℄. The set onsisting of all γN1 , (γ1, ..., γN) willbe denoted by DN

1 . The restrition of the set DN
1 to the set {n, ..., N}we denote by DN

n .We treat the problem of Amerian option priing in an inomplete
{1, S̄}-market [1℄ as a stohasti game between the Seller and the Buyer.The Seller has portfolios π as his strategies. Exerise moments τ ∈ T N

nare Buyer's strategies. Suppose, that Seller's risk funtion is exponentialand depends on de�it of his or her portfolio's apital. So exponentialexpeted risk of the Seller at a moment n ∈ {0, ..., N} with respet toany Q ∈ RN is represented by the following formula




I(Q,τ),γN
n+1(n, Sn

0 ) , EQ

[
exp

{
f(n∨τ)∧N −

τ∧N∑

i=n+1

(γi,△Si)

}
|Fn

]
,

I(Q,τ)(N,SN
0 ) , exp{fN}.



98 OR in eonomisLet D̂N
n ,

{
γNn ∈ DN

n : ess sup
τ∈T N

n ,Q∈RN

I(Q,τ),γN
n (n− 1, Sn−1

0 ) <∞ P-a.s.}.Obviously, D̂n 6= ∅, 1 ≤ n ≤ N .Suppose, that neither the Seller, nor the Buyer knows risk assetspries' distribution Q ∈ RN . The Seller have to ful�ll his obligationaording to an option for sure. Also we suppose, that the Seller isrational, i.e.: 1) he or she assumes, that distribution of risk assets' priesand exerise moment (hosen by the Buyer) will maximaze his or herexpeted risk; 2) he or she managers portfolio to minimazes own expetedrisk. Thus, the Seller have to solve the following minimax problem:
I(Q,τ),γN

1 (0, S0) → ess inf
γN
1 ∈D̂N

1

ess sup
τ∈T N

0

ess sup
Q∈RN

.2. Important results.Let vNn , ess inf
γN
n+1∈D̂N

n+1

ess sup
τ∈T N

n

ess sup
Q∈RN

I(Q,τ),γN
n+1(n, Sn

0 ) be the upperguaranteed value of Seller's expeted risk at a moment n ∈ {0, ..., N}.Theorem 1. Suppose {Sn}n≥0 is a d-dimensional adapted randomsequene, {fn}0≤n≤N is an adapted random sequene of bounded randomvariables and RN , {Q : Q ∼ P}. Then the sequene {vNn }0≤n≤Nsatis�es the following reurrent relation P-a.s.




vNn = max

{
efn ; ess inf

γn+1∈D̂n+1

ess sup
Q∈RN

EQ

[
vNn+1e

−(γn+1,△Sn+1)|Fn

]}
,

vNn |n=N = efN .Theorem 2. Suppose onditions of Theorem 1 are satis�ed and RN∩
MN 6= ∅. Than for any n ∈ {1, ..., N} there is γ∗n ∈ D̂n suh, that P-a.s.

ess inf
γn∈D̂n

ess sup
Q∈RN

EQ

[
vNn e

−(γn,△Sn)|Fn−1

]
=

= ess sup
Q∈RN

EQ

[
vNn e

−(γ∗n,△Sn)|Fn−1

]
.

(1)Remark. Suppose for any n ∈ {1, ..., N} there is γ∗n ∈ D̂n suh,that (1) is true P-a.s. As set T N
0 is �nite, there always exists τ∗ ∈ T N

0 :
ess sup
τ∈T N

0

ess sup
Q∈RN

I(Q,τ),γ∗N
1 (0, S0) = ess sup

Q∈RN

I(Q,τ∗),γ∗N
1 (0, S0).Theorem 3. Suppose onditions of Theorem 1 are satis�ed and thereare (γ∗N1 , τ∗

)
∈ D̂N

1 × T N
0 suh, that P-a.s.

ess inf
γN
1 ∈D̂N

1

ess sup
τ∈T N

0

ess sup
Q∈RN

I(Q,τ),γN
1 (0, S0) = ess sup

Q∈RN

I(Q,τ∗),γ∗N
1 (0, S0). (2)



OR in eonomis 99Then there exists a non-dereasing sequene {C∗
n}0≤n≤N suh, that

fτ∗∧N = ln vN0 +
τ∗∧N∑
i=1

(γ∗i ,△Si)− C∗
τ∗∧N , C∗

0 = 0 P-a.s.Obviously, for any n ∈ {1, ..., N} there is β∗
n: △β∗

n , −(Sn−1,△γ∗n),
β∗
0 = ln vN0 . A pair {π∗, C∗} is alled superhedging portfolio [1℄. In [2℄ itis proved that apital of the superhedging portfolio {π∗, C∗} is minimalamong apitals of all other superhedging portfolios. This justi�es ourhoie of exponential utility.2.4. Corollary 4. Suppose a stopping moment τ∗ ∈ T N

0 satis�es (2).Then it is possible to represent τ∗ ∈ T N
0 by the formula:

τ∗ = min
{
0 ≤ n ≤ N : vNn = exp{fn}

}
.Referenes1. F�ollmer H., Shied A. Stohasti Finane. An Introdution inDisrete Time. Berlin: Walter de Gruyter, 2004.2. Khametov V.M., Shelemekh E.A. Superhedging of Amerianoptions on an inomplete market with disrete time and �nitehorizon // Automation and Remote Control. 2015. 76:9. P. 1616�1634.Analysis of 2015 Chinese stok market rashby means of generalized nonparametrimethod∗N.I. Klemashev1 and A.A. Shananin1, 2, 3, 4

1Lomonosov Mosow State University
2Mosow Institute of Physis and Tehnology

3Federal Researh Center �Computer Siene and Control� of RAS
4People's Friendship University of Russia, Mosow, RussiaThe generalized nonparametri method [1�3℄ is based on the resultsof revealed preferene theory whih is devoted to solving the inverseproblem of the demand analysis. The diret problem of the demandanalysis is: given a utility funtion F , a prie vetor P and a level ofexpenditure I to �nd the optimal demand vetor by solving the followingproblem: max

X>0
F (X), 〈P,X〉 6 I.

∗This researh is supported by RFBR grant � 14-07-00075 and by RSF grant� 16-11-10246.



100 OR in eonomisThe inverse problem (for a �nite number of observations) is: givena set {(P t, Xt)}Tt=1 of observed pries P t and onsumption vetors
Xt (we all this set a trade statistis) to �nd a utility funtion Fwhih rationalizes the observed data, that is, eah Xt solves max

X>0
F (X),

〈P t, X〉 6 〈P t, Xt〉.When solving the inverse problem one put several requirements on theutility funtion F . In the nonparametri method for market analysis andits generalized ounterpart we put an additional requirement of positive-homogeneity of utility funtion (see [2℄, [3℄ for more details).The inverse problem not always has a solution. When it does not, weintrodue the irrationality index, whih shows the degree violation of theexistene onditions and ome to the generalized nonparametri methodfor market analysis. The method allows one to ompute eonomi indiesand predit demand for an arbitrary prie vetors.The irrationality index [4℄ may be de�ned as the optimal value ω∗of the goal funtion in the following linear program: minω, ω + λt −
λτ > ctτ , (t, τ = 1, . . . , T ), ω > 0, where ctτ = log

(
〈P τ ,Xτ 〉
〈P t,Xτ〉

)
. If theirrationality index is zero, then the inverse problem has a solution.The generalized nonparametri method allows one to makepreditions about onsumption at an arbitrary prie vetor. Supposewe have a trade statistis {(P t, Xt)}Tt=1 with irrationality index ω anda prie vetor P . Then the set of predited volumes K(P ) is de�ned asthe set of all nonnegative X suh that the joint trade statistis

{(P t, Xt)}Tt=1 ∪ {(P,X)}has the irrationality index ω.One may show (see [5℄) that if eω > 1, then
K(P ) = {X > 0 | γτ (P )〈P τ , X〉 > 〈P,X〉, τ = 1, T},where

γτ (P ) = min
t∈{1,...,T}

{
ω2

C∗
tτ

〈P,Xt〉
〈P t, Xt〉

}
,and

C∗
tτ = max{ω−k−1Ctt1Ct1t2 . . . Ctk−1tkCtkτ |

{t1, . . . , tk} ⊂ {1, . . . , T }, k > 0},



OR in eonomis 101The values C∗
tτ may be e�etively omputed in O(T 3) operations bymeans of Floyd-Warshall algorithm.We present a new methodology for analyzing stok markets based ongeneralized nonparametri method. We use a linear program from [6℄

T∑

t=1

T∑

τ=1
τ 6=t

ωtτ → min (1)
ωtτ + λt − λτ > ctτ − ωmin, (t, τ = 1, T ), (2)
ωtτ > 0. (t, τ = 1, T ), (3)Here ωmin > 0 is the allowed level of irrationality.The dual problem is
T∑

t=1

T∑

τ=1
τ 6=t

(ctτ − ωmin)xtτ → max (4)
0 6 xtτ 6 1, (t, τ = 1, T ) (5)
T∑

τ=1

xtτ =

T∑

τ=1

xτt. (t = 1, T ) (6)If {x∗tτ | t, τ = 1, . . . , T }, solve (4)�(6), then x∗tτ ∈ {0, 1}. Thisproperty allows one to visualize the solution of the dual problem asa direted graph.The solution of eah of the problems (1)�(3) and (4)�(6) allows oneto selet the most irrational pairs of periods. This redues markedly thenumber of periods an analyst needs to study arefully when analyzingsome event on the �nanial markets. Then we use nonparametri predi-tions to analyze partiular stoks that might ause the rash.In this talk we present our results of applying this new methodologyfor analyzing the rash of Chinese stok market in 2015.Referenes1. Afriat S.N. On a system of inequalities in demand analysis:an extension of the lassial method. // International eonomireview. 1973. V. 14, � 2. P. 460�472.2. Shananin A.A. Integrability problem and the generalizednonparametri method for the onsumer demand analysis(Russian). // Proeedings of MIPT. 2009. V. 1, � 4. P. 84�98.



102 OR in eonomis3. Klemashev N.I., Shananin A.A. Inverse problems of demandanalysis and their appliations to omputation of positively-homogeneous Kon�us�Divisia indies and foreasting. // Journal ofInverse and Ill-posed Problems. 2015. Advane online publiation.DOI: 10.1515/jiip-2015-0015.4. Grebennikov V.A., Shananin A.A. Generalized nonparametrialmethod: Law of demand in problems of foreasting. //Mathematial Models and Computer Simulations. 2009. V.1, � 5.P. 591�604.5. Shananin A.A., Tarasov S. Computing the lass of the form of theinverse demand funtion on disrete data. 58 MIPT onferene.2015.System dynami redit risk model of theorporate borrowerD.S. KurennoyLomonosov Mosow State University, Mosow, RussiaNowadays system dynamis is often used for solving various eonomiand soial problems. System dynamis o�ers an approah in whih themodel resembles reality struturally, so we an validate it's usefulnessand onsisteny. Furthermore, it o�ers a way to see the rami�ations ofthat simpli�ation through simulation, so we an test our hypotheses.System dynamis [1, 2℄ is a perspetive and set of oneptual tools thatenable us to omprehend the struture and dynamis of omplex systems.System dynamis is also a rigorous modeling method that enables us toperform formal omputer simulations of omplex systems and use themfor di�erent purposes. This approah to understanding the nonlinearbehavior of omplex systems over time uses speialized onepts, whihare the elements of any system dynamis model: stoks, �ows, internalfeedbak loops, and time delays. Eah of these elements is interpreted indi�erent ways. Mathematially, the basi struture of a formal systemdynamis omputer simulation model is a system of oupled, nonlinear,�rst-order di�erential (or integral) equations.This work fouses on the development of a system dynami reditrisk model of the ompany �Bashneft�, whih is a major representativeof petroleum re�ning and petroleum produing industries.The author intends to explore the possibility of using systemdynamis to build models desribing prodution proess and �nanialonditions for a ompany. Speial attention is paid to how the behavior



OR in eonomis 103of di�erent maroeonomi fators in�uenes the oil orporation. It'sworth noting that the rude oil pries and oil produt pries (on globaland Russian markets) are among the most signi�ant fators. In thisase, the author onsiders suh petroleum produts as fuel oil, diesel fuel,and gasoline. Apart from those fators, US dollar rate and tax system(mineral extration tax, export duties, petroleum produts domestiexise tax) have a diret e�et on the stability of the model. In addition,MosPrime rate is an important maroeonomi fator and a omponentof various strutures of the system dynamis model. Mosow PrimeO�ered Rate is a referene rate �xed by the National Foreign ExhangeAssoiation (NFEA) based on the o�er rates of Russian ruble depositsas quoted by ontributor banks - the leading partiipants of the Russianmoney market to the �rst lass �nanial institutions.
Fig. 1. Stok and �ow representation of a manufaturing proess.At the beginning of this work, a detailed analysis of the oil ompanyquarterly �nanial statements for the last 5 years was onduted. Itallowed to identify the omponent parts of the model and to formalizesome relationships between them. Then system dynamis tools wereemployed to observe how these relationships in�uene the behavior ofthe system over time. The result was a model that aptures not onlythe urrent state of the ompany, but also the further development of itspoliy. This behavior is adjusted by hanging external maroeonomifators (implemented diret links) and ontrolled by the interation ofinternal fators, realized by diret links and feedbak loops. Internalfators may inlude oil prodution volume, oil re�ning volume, di�erenttypes of osts, loan poliy, and the volume of investments. Investmentsare aimed at reduing the ost of petroleum re�ning and petroleumprodution. The obtained model an be divided into two global parts that



104 OR in eonomisinterat with eah other. The �rst part desribes the prodution proess.It determines the volume of oil prodution, purhase and proessing andthe in�uene on the ompany pro�t. The seond part is related to the�nanial unit of the ompany. This determines the level of debt, ostsand loan for the onsidered orporation. As a result, the model allows tounderstand the strategy, level of loss and the probability of default forthe ompany in the presene of various maroeonomi fators.Referenes1. Sterman J.D. Business Dynamis: Systems Thinking and Modelingfor a Complex World. Boston: MGraw-Hill Companies, 2000.2. Katalevsky D.U. Fundamentals Of Simulation Modeling AndSystem Analisys. Mosow: Mosow University Press, 2011.Gender in�uenes on the partiipantsbehavior in the eonomi experiments∗
I.S. Menshikov1, 2, O.R. Menshikova1, A.O. Sedush1,

T.S. Babkina1, 3, and E.M. Lukinova3
1MIPT , 2CCRAS, 3Skoltech, Mosow, RussiaMIPT Laboratory of experimental eonomis has been arrying theexperiments beginning Fall 2013 [1, 2℄. The goal of that is to studyooperation in soial dilemmas. Eah experiment onsistes of a di�erentset of 12 people, pre-seleted before the experiment to be unfamiliarwith one another. All partiipants are pre-tested using psyhologialquestionaries.The �rst step in every experiment begins from anonymous gamephase, where partiipants played 2x2 eonomi games. Partiipants arerandomly paired with an anonymous partner eah period of the game.Number of periods is not known to partiipants. Eah period partiipantsare given information only about their pro�t for that period. Afterthat, we arry the initial step of group soialization: in a sequene thepartiipants tell their names and adjetives that start from the sameletter, in a reverse order share their life fats, and divide into the groups.Finally, the partiipants play the same games like in the �rst step in thenewly formed groups during the soialization.There is two series of the experiments:1.

∗This researh is supported by the grant RFFI 16-01-00633A.



OR in eonomis 105In the �rst step two games Prisoners' Dilemma and Ultimatum Gameare onduted. After the soialization phase two people from partiipantsvoluntarily beome leaders. The other partiipants deide one by onewhih leader they want to join. Thus two groups of 6 are formed. Bothgroups are asked to performe some group task. Series 1 onsisted of 27experiments (N=324, 202 males)[3℄.2.Unlike in series 1, in series 2 we use Prisoners' Dilemma and TrustGame. Partiipants divide into the groups this way: two people frompartiipants voluntarily beome leaders; players that are not leadersare asked to deide whih a leader they want to join. On a piee ofpaper they indiate their hoie of leader and how muh money theyare willing to pay for joining the group. After that we form 3 groups of4 people. Two groups that inlude leaders have to perform some grouptasks. Partiipants from the last group without a leader are not ableto speak to or even to look at eah. Therefore, the last group is notsoialized. Series 2 onsistes of 5 experiments (N=60, 45 males).Results:1. Soialization in�uenes deisions in Prisoners' Dilemma andUltimatum Game in di�erent ways for males and females .In Prisoners' Dilemma the initial (before soialization) levelooperation among women is higher than among men in series 1 (onaverage δ = .02, Nm = 202, Nf = 122, wiloxon-test, p-value = .05) [4℄,in series 2 (on average δ = .12, Nm = 45, Nf = 15, wiloxon-test, p-value = .05). Whereas after the soialization the perentage of hoosingooperative strategies among males in series 1 inreases (on average δ =.35, Nm = 202, wiloxon-test, p-value < 0,001), in series 2 (on average
δ = .53, Nm = 45, wiloxon-test, p-value < 0,001). Among females theperentage of hoosing ooperative strategies in series 1 inreases (onaverage δ = .18, Nf = 122, wiloxon-test, p-value < .001), in series 2(on average δ = .42, Nf = 15, wiloxon-test, p-value < .001).In Ultimatum Game the initial levels of ooperation for malesand females are equal. However, after the soialization the level ofooperation for males is higher than for females (on average δ = .2,
Nm = 202, Nff = 122, wiloxon-test, p-value=0,04).2. In Trust Game males trust less than females, but reiproate more.In Trust Game we analyzed the "average trust"and "the averagegratitude". Before soialization males trust less than females (on average
δ = .58 Nm = 45, Nf = 15, wiloxon-test, p-value = .07) and theyreiproate more (on average δ = 1.18, Nm = 45, Nf = 15, wiloxon-



106 OR in eonomistest, p-value = .14). After soialization males are less trust than females(on average δ = .76, Nm = 45, Nf = 15, wiloxon-test, p-value = .03)and they are more gratitude (on average δ = .76, Nm = 45, Nf = 15,wiloxon-test, p-value = .02).Thene we an onlude that in Trust Game soialization has notso muh e�et ompared to Prisoners' Dilemma and Ultimatum Game.Here di�erenes between sexes lead to more trust among females andmore gratitude among males.Our study is a on�rmation of the fat that it is important to takeinto aount di�erenes between sexes in soio-eonomi models.Referenes1. Ostrom E. Governing the ommons: The evolution of institutionsfor olletive ation. Cambridge: Cambridge University Press;1990.2. Fehr E, Shmidt KM. A theory of fairness, ompetition, andooperation. Q J Eon. 1999; 114(3): 817-868.3. Berkman E.T., Lukinova E., Menshikov I., Myagkov M. Soialityas a Natural Mehanism of Publi Goods Provision. PLoS ONE,10(3), 2015, e0119685.4. Menshikova O.R., Menshikov I.S., Sedush A.O. In�uene of threetypes of soialization on the behavior of men and women in soialand eonomi experiments. Proeedings of MIPT, 2015, pp 56-65.On long-term average optimality in lineareonomi systems with unboundedtime-preferene rates∗E.S. PalamarhukCentral Eonomis and Mathematis Institute, RASSteklov Mathematial Institute, RAS, Mosow, RussiaThe work in devoted to the study of an average optimality problemover an in�nite time horizon for linear stohasti eonomi systems. Theagents have unbounded time-preferene rates inluded into quadratiost funtion. In both ases of positive and negative disounting wepropose new optimality riteria and establish average optimal ontrolsin the form of linear feedbak laws.
∗The work is supported by the Russian Siene Foundation under grant 14-50-00005.



OR in eonomis 107We onsider a linear eonomi system with evolution desribed by aontrolled stohasti proess Xt de�ned on a omplete probability spae:
dXt = AXtdt+BUtdt+Gtdwt , X0 = x, (1)where A,B are onstant matries; Gt is time-varying; wt is amultidimensional Brownian motion; x is non-random; Ut, t ≥ 0, is anadmissible ontrol, i.e. an Ft = σ{ws, s ≤ t}�adapted proess suh thatthere exists a solution to (1). Let us denote by U the set of admissibleontrols.The ost funtional is quadrati over the planning horizon [0, T ]:

J
(d)
T (U) =

∫ T

0

ft[(X
′
tQXt + U ′

tUt] dt, (2)where Q ≥ 0; ft is a disount funtion, assumed to be monotone,di�erentiable, with f0 = 1; φt = −ḟt/ft de�nes the orrespondingdisount rate.We allow the agent to have either positive or negative time-preferene, i.e., φt > 0 or φt < 0. The impatiene (or patiene) inin�uene on her/his deisions is onsidered to be 'extreme' in the sensethat |φt| → ∞, t→ ∞.Examples.Weibull disount funtion ft = e−rtq (q > 1, r > 0) relatedto highly nonlinear subjetive time pereption [1℄. Negative doubleexponential disounting, when ft = exp (exp rt) (r > 0).Assumption D1. For φt > 0 the disount funtion ft islogarithmially onvex.Assumption D2. For φt < 0 the disount rate (−φ̇t)/φt ≤ c̄φt,
t→ ∞, for some onstant c̄ > 0.First assume there exists the absolute ontinuous symmetri
Πt ≥ 0, t ≥ 0, whih satis�es the Riati equation

Π̇t +ΠtAt +A′
tΠt −ΠtBR

−1B′Πt +Q = 0 , (3)where At := A− 1/2φt · I (I is an identity matrix).Then we may de�ne a feedbak ontrol law U∗ by
U∗
t = −B′ΠtX

∗
t , (4)where the proess X∗

t , t ≥ 0, satis�es
dX∗

t = (A−BB′Πt)X
∗
t dt+Gtdwt, X∗

0 = x . (5)



108 OR in eonomisFor bounded φt the riterion based on long-run expeted loss per unitof umulative disount has been proposed in [2℄ to study the averageoptimality of U∗ when T → ∞. However, it would not seem to beadequate in the ase onsidered here.The above assumption on (3) is non-trivial. The well known su�ientonditions, e.g., ontrol system stabilizability and detetability, allrelated to bounded matries, learly do not hold sine ‖At‖ → ∞, → ∞.Moreover, At has spei� stability properties whih we desribe below.Remark. At is superexponentially stable if φt > 0; superexponentiallyantistable if φt < 0. The rate of stability (antistability) is φt (−φt).De�nition 1. Let At be a square matrix. Then we say that Atis superexponentially stable with the rate δt > 0 if δt → ∞, t→ ∞,
‖At‖ ≤ κδt and ‖Φ(t, s)‖ ≤ κ1 exp (−

t∫
s

δv dv) , s ≤ t, where Φ(t, s) is thefundamental matrix orresponding to At, κ, κ1 > 0 are some onstants;
At is superexponentially antistable if −A′

t is superexponentially stable.De�nition 2. The pair (At, Bt) is said to be δt-superexponentiallystabilizable if there exists a matrix Kt, ‖Kt‖ ≤ ĉ1δt suh that
At +BtKt is superexponentially stable with the rate δt. Similarly, thepair (At, Ct) is δt-superexponentially detetable if for Ft, ‖Ft‖ ≤ ĉ2δt ,the matrix At + FtCt is δt-superexponentially stable (ĉ1, ĉ2 are someonstants).Obviously, if At is δt-superexponentially stable then (At, Bt)((At, Ct)) is stabilizable (detetable) for any bounded Bt (Ct). Beingvalid for the ase φt > 0, it guarantees that the following statement holdstrue.Theorem 1. Let Assumption D1 hold. Then the ontrol U∗ givenby (4)�(5) is a solution to

lim sup
T→∞

EJ
(d)
T (U)

T∫
0

(ft/φt)‖Gt‖2 dt
→ inf

U∈U
.Note we do not assume any bounds on Gt, hene the averageoptimality result remains valid even for fast-growing perturbationparameters. Beause of D1, gt = ft/φt is dereasing and may also bepereived as a disount funtion. Thus the denominator in the long-run average optimality riterion of Theorem 1 represents variane ofumulative extra-disounted disturbanes. Due to antistability of At inthe ase of φt < 0, we need some requirements.



OR in eonomis 109Assumption 1. The pair (At, Bt) is (−φt)-superexponentiallystabilizable; the pair (At, Ct) is (−φt)-superexponentially detetable.Assumption 2. Let Gt and ft be suh that
lim
t→∞

φtft‖Gt‖2
t∫
0

φsfs‖Gs‖2 ds
φt = 0 .Next we state the following result.Theorem 2. Let Assumptions D2, 1 and 2 hold. Then the ontrol

U∗ given by (4)�(5) is a solution to
lim sup
T→∞

EJ
(d)
T (U)

T∫
0

(−φt)ft‖Gt‖2 dt
→ inf

U∈U
.Again, we observe (negative) extra-disounting by gt = (−φt)ft > ft intothe average optimality riterion. Unlike the positive time-preferenease, the ondition relating disount rate and disounted disturbanesis needed to establish the average optimality when φt < 0. At least, weshould onsider only fading perturbations, i.e. ‖Gt‖ → 0, t→ ∞.Referenes1. Kim B.K., Zauberman G. Pereption of antiipatory time intemporal disounting // Journal of Neurosiene, Psyhology, andEonomis. 2009. V. 2, �. 2. P. 91.�101.2. Palamarhuk E.S. Stabilization of Linear Stohasti Systems with aDisount: Modeling and Estimation of the Long-Term E�ets fromthe Appliation of Optimal Control Strategies // MathematialModels and Computer Simulations. 2015. V. 7, �. 4. P. 381�388.Quantile hedging of European option inmultidimensional inomplete market withouttransation osts (disrete time)O.V. ZverevCEMI RAS, Mosow, RussiaTheory of European option's hedging with quantile riterion in in-omplete markets without transation osts in disrete time was onsi-dered in some artiles [1�4, 6�7℄. In [1℄ a proedure of European



110 OR in eonomisoption's alulation with quantile riterion in one-dimensional ompletemarket without transation osts was o�ered. The proedure is basedon theorem about S-representation of martingales [5℄. In [4℄ for stritlypositive ontingent laim in omplete one-dimensional market withouttransation osts they onstruted solution for the problem of quantilehedging. In [6�7℄ dual problems are under researh: (1) diret problemis to maximaze probability of suessful hedging with restrition thatoption's value does not exeed some given onstant x0 > 0; (2) dualproblem is to minimaze option's value with restrition that probabilityof suessful hedging is not less than 1 − ε, where ε ∈ (0, 1) isarbitrary. Unlike above stated proeedings we prove that solution ofthe quantile hedging problem in multidimensional inomplete marketwithout transation osts an be redued to two superhedging problems.1. Superhedging portfolio of European option. Let
{St,Ft}t∈N0

be a d-dimensional (d < ∞) adapted random sequeneon the stohasti basis (Ω,F , {Ft}t∈N0
,P
), where N0 , {0, ..., N},

N < ∞ is a horizon. The sequene desribes evolution of prie for drisky assets. By S(j)
t we denote omponent j of d-dimensional vetor St,

t ∈ N0. We suppose that there is one risk-free asset with zero return andinitial ost 1. Let fN (S•) be a FN -measurable bounded random variable,
S• , (S0, ..., SN ). By ℜN we denote the set of probability measures Qsuh that any measure Q ∈ ℜN is equivalent to measure P. MN is theset of martingale measures. Let γN1 , {γt}t∈N0

be a d-dimensional F-preditable sequene and {βt}t∈N0
be a F-preditable one-dimensionalsequene. The sequene of pairs π , (βt, γt)t∈N0

is alled portfolio [5℄.We denote 1AN
(ω) ,

{
1, if ω ∈ AN

0, if ω /∈ AN
, where AN is an arbitrary

FN -measurable set. Let us onsider two alulation problems for Euro-pean option with ontingent laims fN (S•) and 1AN
(ω) in inompletemarket without transation osts [5℄.Theorem 1. Suppose |ℜN ∩MN | ≥ 1. Than with respet to anymeasure Q ∈ ℜN there exists solution of the alulation problem forEuropean option with ontingent laim fN (S•) (1AN
(ω)).Remark. The solution of the alulation problem for Europeanoption with ontingent laim fN (S•) (1AN

(ω)) an be fully desribedas follows: π∗ = {β∗
t , γ

∗
t }t∈N1

(
πλ =

{
βλ
t , γ

λ
t

}
t∈N1

) � self-�naningportfolio,Xπ∗
t

(
Xπλ

t

) � apital of portfolio π∗ (πλ
) at a moment t ∈ N0,

C∗
t

(
Cλ

t

) is a onsumption at any moment t ∈ N1, X(π∗,C∗)
t = Xπ∗

t −C∗
t
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(
X
(πλ,Cλ)
t = = Xπλ

t − Cλ
t

) is a apital of superhedging portfolio withonsumption (π∗, C∗)
((
πλ, Cλ

)) [2℄.2. Quantile superhedging portfolio of European option. Letus denote: (i) {χt,Ft}t∈N0
� adapted random sequene with boundedvariation P-a.s. [5℄; (ii) c , Xπ∗
t

∣∣
t=0

.De�nition. A pair (π, χ) we all self-�naning portfolio withbounded variation, where π ∈ SF . Capital of portfolio with boundedvariation (π, χ) at a moment t ∈ N0, denoted by X(π,χ)
t , we de�ne byequality X(π,χ)

t = Xπ
t − χt.De�nition. By solution of the alulation problem for Europeanoption with ontingent laim fN (S•) and with quantile riterion of level

1− α (where α ∈ (0, 1)) in inomplete market without transation ostswith respet to any measure Q ∈ ℜN we mean self-�nansing portfoliowith bounded variation (πα, χα) suh that it's apital X(πα,χα)
t at amomentN satis�es inequality Q(X(πα,χα)

N ≥ fN (S•)
)
≥ 1−α. Portfolio

(πα, χα) we will name quantile superhedging portfolio of level 1− α.Theorem 2. Suppose fN (S•) is a FN -measurable bounded randomvariable and |ℜN ∩MN | ≥ 1. Suppose also that for any α ∈ (0, 1) thereare λ(j)t (α) ∈ R
+, j = 1, d, t ∈ N0 suh that with respet to any measure

Q ∈ ℜN the following inequality is true
Q




N⋂

t=1

d⋂

j=1

{
S
(j)
t ≥ λ

(j)
t (α)

}

 ≥ 1− α.Then there exists solution of the alulation problem for European optionwith quantile riterion of level 1− α.Remark. Quantile superhedging portfolio of level 1−α, i.e. (πα, χα),has the form: γαt = γ∗t − cγλt , βα

t = β∗
t − cβλ

t , χα
t = C∗

t − cCλ
t . It's initialapital X(πα,χα)

0 = c
(
1−Xπλ

0

).3. Minimax quantile hedging portfolio of European option.In presentation the solution of European alulation problem withrespet to the "worst-ase" measure Q∗ /∈ ℜN will be given (see. [2℄). Itis proved that with respet to Q∗ initial inomplete market is ompleteand Q∗ is disreet. This fats allowed us to onstrut new examplesof European option's alulation with quantile riterion in inompletemarket with respet to Q∗.



112 OR in eonomisReferenes1. Zverev O.V. Calulation of European option in omplete (B,S)-market with quantile riterion [in Russian℄ // Proeedings of sien-ti� and tehnial onferene for students, postgraduate studentsand speialists of MSIEM. Mosow, 2007. P. 31.2. Zverev O.V., Khametov V.M. Minimax hedging of European opti-ons in inomplete markets (disreet time) [in Russian℄ // Reviewof applied and industrial mathematis. 2011. V. 18, No. 1. P 26�54.3. Zverev O.V., Khametov V.M. Minimax hedging of European opti-ons in inomplete markets (disreet time) [in Russian℄ // Review ofapplied and industrial mathematis. 2011. V. 18, No 2. P 193�204.4. Melniko A.V., Volkov S.N., Nehaev M.M. Mathematis of�nanial obligations [in Russian℄. Mosow: HSE, 2001.5. Shiryaev A.N. Fundamentals of Stohasti Finanial Mathematis.Volume 2: Theory [in Russian℄. Mosow: Mosow, 1998.6. F�ollmer H., Shied A. Stohasti Finane. An Introdution in Dis-rete Time. Berlin: Walter de Gruyter, 2004.7. F�ollmer H., Leukert P. Quantile hedging // Finane andStohastis. 1999. Vol. 3. P. 251�273.
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Solution of two-parameteronsumption-investment problemV. BabinMosow State University, Mosow, RussiaThis work onerns the onsumption-investment problem with sto-hasti interest rate rt [1℄ and volatility ηt [2, 3℄. The resulting model islose to [4℄. More detailed desription see in [5℄.We onsider a model with parameters ηt è rt, whose dynamis aredriven by Cox-Ingersoll-Ross (CIR) model [6℄:
dηt = l(N − ηt)dt+ ση

√
ηtdZ1(t),

drt = k(R− rt)dt+ σr
√
rtdZ2(t),where ση, σr , l,N , k, R are positive onstants. Z1(t) è Z2(t) are indepen-dent standard Wiener proesses. Furthermore it is assumed that 2lN >

σ2
η and 2kR > σ2

r .Finanial market onsists of three assets, whih are tradedontinuously over [0, T ]. One is a risk-free asset with interest rate rtand other two are risky assets, whose prie proesses S1t, S2t satisfyequations
dS1t

S1t
= (rt +mηt)dt+ σ1

√
ηtdZ1(t),

dS2t

S2t
= (rt + nrt)dt+ σ2

√
rtdZ2(t),where m, n, σ1, σ2 are positive onstants.



114 OR in �nane and bankingAssume that the investor has a power utility funtion u(C) = Cγ/γ.At time t he invests in risky assets and onsumes frations π1,2t and ctrespetively.Mathematially, the investor wishes to maximize the followingexpeted utility:
U(W, η, r) = max

(cs≥0, π1,2 s)|Ts=0

E0


α

T∫

0

e−δs (csWs)
γ

γ
ds+ (1− α)e−δT W

γ
T

γ


 ,where e−δt is a disount oe�ient.Using the dynami programming priniple, one an get the Hamilton-Jaobi-Bellman equation

H(W, η, r, t) = max
(cs≥0, π1,2 s)|Ts=t

Et


α

T∫

t

e−δs (csWs)
γ

γ
ds+ (1− α)e−δT W

γ
T

γ


 .Let us introdue the following notation

Df =
σ2
1 l

2 − γ (σ1l + σηm)
2

(1− γ)σ2
1

, Dg =
σ2
2k

2 − γ
[
(σ2k + σrn)

2
+ 2σ2

2σ
2
r

]

(1− γ)σ2
2

,

λ1,2 =
1

σ2
η

(
l − γ

1− γ

ση
σ1
m

)
±
√
Df

σ2
η

, X =
σ2
η(λ1 − λ2

2
,

λ3,4 =
1

σ2
r

(
k − γ

1− γ

σr
σ2
n

)
±
√
Dg

σ2
r

, Y =
σ2
r (λ3 − λ4)

2
.Then the Hamilton-Jaobi-Bellman equation has a solution of theform

H(W, η, r, t) = e−δtW
γ

γ
F 1−γ(η, r, t),where

F (η, r, t) = α1/(1−γ)

T∫

t

G(η, r, s)ds + (1− α)1/(1−γ)G(η, r, t),

G(η, r, t) = ef(t)η+g(t)r+h(t),



OR in �nane and banking 115and funtions f(t), g(t) and h(t) are de�ned as
f(t) =

λ1λ2
(
eX(T−t) − 1

)

λ1eX(T−t) − λ2
, g(t) =

λ3λ4
(
eY (T−t) − 1

)

λ3eY (T−t) − λ4
,

h(t) = lN

T∫

t

f(s)ds+ kR

T∫

t

g(s)ds− δ

1− γ
(T − t).Optimal investor strategies are equal to

π∗
1(η, r, t) =

m

(1− γ)σ2
1

+
ση
σ1

F ′
η(η, r, t)

F (η, r, t)
,

π∗
2(η, r, t) =

n

(1− γ)σ2
2

+
σr
σ2

F ′
r(η, r, t)

F (η, r, t)
,

c∗(η, r, t) =
α1/(1−γ)

F (η, r, t)
.Furthermore, assuming a number of restritions one an estimate theexpeted utility for in�nite time horizon as

Û(W, η, r) =
W γ

γ

(
K

L

)1−γ

e(1−γ)(λ2η+λ4r)and the optimal strategies are equal to
π̂1

∗
=

m

(1− γ)σ2
1

+
ση
σ1
λ2; π̂2

∗
=

n

(1 − γ)σ2
2

+
σr
σ2
λ4; ĉ

∗ =
L

K
e−λ2η−λ4r,where

K =

(
λ1 − λ2
λ1

)2lN/σ2
η
(
λ3 − λ4
λ3

)2kR/σ2
r

, L =
δ

1− γ
− lNλ2 − kRλ4.Referenes1. Korn R., Kraft H. A stohasti ontrol approah to portfolio prob-lems with stohasti interest rates// SIAM Journal of Control andOptimization, 2001. V. 40. P. 1250�12692. Heston S.L. A losed-form solution for options with stohastivolatility with appliations to bonds and urreny options// TheReview of Finanial Studies. 1993. V. 6. � 2. P. 327�343.



116 OR in �nane and banking3. Fleming W.H., Pang T. An Appliation of Stohasti ControlTheory to Finanial Eonomis// SIAM Journal of Control andOptimization. 2004. V. 43. � 2. P. 502�531.4. Chang H., Rong X. An investment and onsumption problem withCIR interest rate and stohasti volatility// Abstrat and AppliedAnalysis. 2013. Speial Issue(2012). Artile ID 219397. P. 1�12.5. Liu J. Portfolio seletion in stohasti environments// The Reviewof Finanial Studies. 2007. V. 20. � 1. P. 1�39.6. Cox J.C., Ingersoll J.E.Jr., and Ross S.A. An IntertemporalGeneral Equilibrium Model of Asset Pries// Eonometria. 1985.V. 53. � 2. P. 363�384.Futures position management based onmultistage stohasti programmingD.Y. Golembiovsky1, T.V. Bezruhenko2, and I.N. Lagoda3
1, 3Mosow State University, 1Sinergy University, 1Bank ZENIT,

2Renaissane apital , Mosow, RussiaThis report introdues futures portfolio management models. Thesemodels take into aount an initial margin for futures. They onsidera long-term investment horizon whih an be transfered in the futurein a ase of low probability to ahieve the required portfolio valueat the end of investment horizon. Analyzed models allow trading infutures of di�erent expirations. Buy/sell ommission is deduted fromthe aount for eah trade. Variation margin is alulated eah tradingday. Thus, suh portfolio management models are lose to the real marketonditions.This work presents results of experiments, where the portfolioinludes futures of di�erent expiration dates on a single underlying asset.We onsider three underlying assets: RTS index, Gazprom and Sberbank.The pries of the relevant futures have been taken fromMosow exhangewebsite [1℄. The prie of the underlying asset is modeled using ARIMA-GJR model. It is a GARCH model with a leverage e�et whih stemsfrom the fat that losses have a greater in�uene on future volatilitiesthan gains.
σ2
t = K + δσ2

t−1 + αǫ2t−1 + φǫ2t−1It−1 (1)where It−1 = 0 if ǫt−1 ≥ 0, and It−1 = 1 if ǫt−1 < 0.The problem of portfolio optimization is formulated as a problem ofmultistage stohasti programming [2℄, [3℄. Rebuilding the portfolio in



OR in �nane and banking 117aordane with the solution of the optimization problem is done everytrading day. For this optimization in a partiular trading day a tree ofsenarios of possible prie movements of the underlying asset with theorresponding probabilities of the senarios is built using ARIMA-GJRmodel. Next, the problem of dynami portfolio optimization is solvedusing this tree. The results of the optimization are reommendations tobuy and sell ontrats in the root node of the tree, whih minimize therisk of failure to ahieve the required value of the portfolio by a ertaindate.The alulations in eah simulated trading day on the futures marketinlude: ommission for the transations, alulation of variation margin,monitoring the probability of reahing the required portfolio value.Let u be a desired value of the portfolio at the terminal moment oftime;
gν is a value determined for eah senario ν based on the followinginequalities:

gν +WTν
≥ u, gν ≥ 0 (2)Then the optimization riterion an be written as follows:

min
N∑

ν=1

gνpν , (3)
pν is the probability of the senario ν.This riterion presents a minimum of the expetation value of gν . So,solving the optimization problem the portfolio with minimal expetedpossible gap is onstruted.The result of modelling 2 months trading for portfolio whih inludedfutures on Sberbank is presented in Fig. 1. The required apital was120000 roubles, the initial apital was 100000 roubles,the ommissionper trade was 2 roubles, maintenane margin was 1400 roubles for aontrat. For a terminal moment of time the value of the portfolio was117334. It is less than the required value but still the portfolio showed apro�t.On the whole, we simulated 1-year traes of portfolio managementfor RTS index futures, futures on Gazprom and Sberbank with di�erentmaturities. Referenes1. http://moex.om/.
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Fig. 1. Result for portfolio of futures on Sberbank.2. Shapiro A., Dentheva D. Ruszzynski A. Letures on StohastiProgramming: modeling and theory// MPS-SIAM Series onOptimization. - 2009.3. Golembiovsky, D. and Abramov, A., Option portfolio managementas a hane onstrained problem. In Stohasti Programming:Appliations in Finane, Energy, Planning and Logistis, editedby H. Gassmann, S. W. Wallae, W. T. Ziemba, 2013, 155-172(World Sienti�).Maximum likelihood estimator for defaultrate of the redit portfolioV.V. Levin, S.Y. Guskov, and S.A. KhonovBauman Mosow State Tehnial University (BMSTU) and MosowInstitute of Eletronis and Mathematis (MIEM HSE), Mosow,Russian FederationBanks must alulate reserves for possible redit portfolio losses inaordane with Basel II requirements [3℄ by the following formula (1):Reserves = EAD ∗ PD ∗ LGD, (1)where EAD � the Exposure at Default, PD � Default Probability ofredit; LGD (Loss Given at Default) -� non-payment of funds by redit



OR in �nane and banking 119when default ours.Banks usually uses di�erent delinqueny indexes for ontrol of defaultrisk level.There is o�ered to use the maximum likelihood estimator for samplesfrom the strati�ed set [1,2℄ to estimate the redit portfolio default rate.Let t0 < t1 < · · · < ti < tN are the given alendar date, here themonth's last days are onsidered. Let Vi(t) is a vintage ( = set of loans,opened during time period [ti−1, ti]) at the urrent moment t, and Vi isthe vintage Vi(t) at the moment t = ti, i = 1, . . . , N . It is lear that
Vi(t) ∩ Vj(t) = ∅, i 6= j, Vi(t) = ∅, if t < ti, i = 1, . . . , N.
∪N
i=1 Vi(t) is a redit portfolio at moment t.For vintage Vi = Vi,D ∪ Vi,ND, where Vi,D(Vi,ND) is the set ofdefaulted (non-defaulted) redits in the vintage. Quantity K(Vi,D) ofdefaulted redits and quantity K(Vi,ND) of non-defaulted redits invintage Vi are unknown, but vintage size K(Vi) = K(Vi,D) +K(Vi,ND)is known. Let βit is the rate of observed defaults in Vi(t) at the moment

t, i = 1, . . . , N.Maximum likelihood estimator β̂it (from [1,2℄) might be used forassessing default rate of a redit portfolio ⋃N
i=1 Vi(t) at the moment t.It is o�ered the following maximum likelihood estimator of defaultprobability PDt for the given moment t:

P̂Dt =

(
N∑

i=1

β̂itK (Vi(t))

)
/

N∑

i=1

K (Vi(t)) .Referenes1. G. I. Ivhenko and S. A. Khonov An asymptoti estimate forstrati�ed �nite populations. Diskr. Mat., 1989, Volume 1, Issue3, Pages 87�95.2. G. I. Ivhenko and S. A. Khonov Statistial estimation of theomposition of a �nite set. Diskr. Mat., 1996, Volume 8, Issue 1,Pages 3�40.3. Basel II: International Convergene of Capital Measurement andCapital Standards (2006), p.86.



120 OR in �nane and bankingBounds on the value of Amerian option ondi�erene of two assets∗V.V. Morozov and K.V. KhizhnyakMosow State University, Mosow, RussiaAn Amerian all option on the di�erene of two assets (a two sideMargrabe option [1℄) provides its holder the right to exhange one assetfor another at any time prior to expiration T at strike Ki, i = 1, 2depending on the asset. An upper bound is onstruted using a methodbased on the integral formula of option value [2℄. A lower bound is derivedby Monte Carlo simulations using exerise boundary approximation asa deision rule.We onsider the asset values Si(t), i = 1, 2 satisfy the equations ofgeometrial Brownian motion dSi(t) = Si(t)(αidt + σidzi(t)), i = 1, 2,where zi(t), i = 1, 2 are standard Wiener proesses (zi(0) = 0) withonstant orrelation |ρ| < 1, r > 0 is a bank interest rate, αi = r − δiare the average rates of return, σ2
i are the average volatilities, δi > 0are the dividends paid on the ith asset. The payo� at time t is givenby f(S(t)) = max

i=1,2
(Si(t) − S3−i(t) − Ki)+ where a+ = max(a, 0) and

S(t) = (S1(t), S2(t)).Let S = (S1, S2). The initial option value F (S, t) an be determinedas an upper bound of mean disounted payo�s over all the exerisedeision rules: F (S, t) = supτ∈[t,T ]E[e−r(τ−t)f(S(τ))|S(t) = S].The optimal deision rule is given by [3℄
τ∗ = min (t | F (S1(t), S2(t), t) = f(S1(t), S2(t), t), T )and de�nes the immediate exerise region

E(t) =
{
S ∈ R

2
+ | F (S, t) = f(S, t), max(S1(t), S2(t)) > 0

}
.It is shown that the immediate exerise region E onsists of twodisjoint subregions:

Ei(t) =
{
S ∈ E(t)

∣∣∣ Si(t)− S3−i(t) >
Ki −K3−i

2

}
, i = 1, 2.Let Gi(S3−i, t) denote the border of the subregion Ei(t), i = 1, 2. It isshown that Gi(S3−i, t) are onvex nondereasing funtions and the graph

∗The reported study was funded by RFBR aording to the researh projet �16-01-00353 a.



OR in �nane and banking 121of Gi(S3−i, t) approahes asymptotially the line Si = ci(t)S3−i +wi(t),where ci(t) > 1 and w1(t) > (K1 −K2)/2, w2(t) > −c2(t)(K1 −K2)/2in ase of K1 > K2.To derive the oe�ients ci(t), wi(t) and derivatives G′
i(0, t) theintegral formula of option value is used [4℄:

F (S, t) = C(S, t) +

2∑

i=1

T∫

0

e−rt

∫

Mi(t)

(
δiSie

α̃it+σi

√
txi −

−δ3−iS3−ie
α̃3−it+σ3−i

√
tx3−i − rKi

)
ψ(x)dxdt, i = 1, 2,

Mi(t) =
{
x ∈ R

2
+ | Sie

α̃it+σi

√
txi > Gi(S3−ie

α̃3−it+σ3−i

√
tx3−i , t)

}
, (1)where C(S, t) = e−r(T−t)E[f(S(T ))] is a prie of orresponding Europeanoption, x = (x1, x2), ψ(x) is a bivariate normal density funtion. Let

α̃i = αi −
σ2
i

2
, σ2 = σ2

1 − 2ρσ1σ2 + σ2
2 , α̃ = α1 − α2, α̂ = α̃1 − α̃2,

di(Si) =
ln(Si/Ki) + (α̃i + σ2

i )T

σi
√
T

, d̃i(Si) =
ln(Si/Ki) + (α̃i + ρσ1σ2)T

σi
√
T

,

a =
ρ√

1− ρ2
, ri = r − α̃i, ζi =

1

σi
√
1− ρ2

, bi = α̃iζi, b
′
i = (α̃i + σ2

i )ζi,

δi,3−i = δi − α̃3−i − ρσ1σ2, d(ci) =
ln(ci) + ((−1)3−iα̃+ σ2

2 )T

σ
√
T

,

d̃(ci) =
ln(ci) + ((−1)3−iα̃− σ2

2 )T

σ
√
T

, d̂(ci) =
ln(ci) + (−1)3−iα̂T

σ
√
T

,

b′′i = (α̃i + ρσ1σ2)ζi, Λ
′
i,3−i = I(a, b′i, σ3−i, 0, δi,3−i)− I(a, b′i, 0, 0, δi),

λi =
rKi

Gi(0, 0)
, Λi,3−i = I(a, bi, σ3−i, 0, r3−i)− I(a, bi, 0, 0, r),

I(a, b, c, d, δ) =
e
− d(b+ac)

a2+1

√
η

[
e
− |d|√η

a2+1 Φ

(√
ηT

a2 + 1
− |d|√

(a2 + 1)T

)
−

−e
|d|√η

a2+1 Φ

(
−
√

ηT

a2 + 1
− |d|√

(a2 + 1)T

)]
,

η = (b + ac)2 + (−c2 + 2δ)(a2 + 1) > 0.
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J(a, b, d, δ) = h(d)− e−δTΦ

(
b
√
T + d√

T√
a2 + 1

)
+

+
1

2

(
b√
η(0)

− 2h(d) + 1

)
e
− db+d

√
η(0)

a2+1 Φ

(√
η(0)T

a2 + 1
− d√

(a2 + 1)T

)
−

−1

2

(
b√
η(0)

+ 2h(d)− 1

)
e
−db−d

√
η(0)

a2+1 Φ

(
−
√
η(0)T

a2 + 1
− d√

(a2 + 1)T

)
,where η(0) = b2 + 2δ(a2 + 1), δ > 0, d > 0, h(0) = 1/2, h(d) = 1 if

d > 0.It is shown that G′
i(0, 0) is equal to

1− J(a, b′′i , 0, δ3−i)− e−δ3−iTΦ(d̃i(Gi(0, 0)))

1− J(a, bi, 0, δ) + δiζiΛ′
i,3−i − λiζiΛi,3−i − e−δiTΦ(di(Gi(0, 0)))

.The oe�ients ci(t) and wi(t), i = 1, 2 for any 0 < t < T are derivedas a solution of the system of nonlinear equations.Note that funtion Gi(S3−i, t) = max[G′
i(0, t)S3−i +

Gi(0, t), ci(t)S3−i + wi(t), (δ3−iS3−i + rKi)/δi] is not greater than
Gi(S3−i, t), i = 1, 2. Let M̄i be Mi substituting Gi(S3−i, t) for
Gi(S3−i, t). Then Mi is ontained in M̄i. An upper bound of the optionvalue an be derived by substituting Mi for M̄i into (1).For example, let r = 0.05; δ1 = δ2 = 0.01; σ1 = 0.2; σ2 = 0.1; ρ =
0.5; K1 = 8; K2 = 5; S1 = 15;S2 = 5; T = 3 then: c1(0) = c2(0) =
1.775; w1(0) = 13.97; w2(0) = 5.39.The lower bound of the option is alulated using the exerise rule
τ0 = min[min{t|S(t) ∈ M̄1(t)

⋃
M̄2(t)}, T ] and Monte-Carlo simulation.An upper bound is equal to 3.428, and a lower bound is equal to 3.424.Referenes1. Margrabe W. The value to exhange one asset for another //Journal of Finane. 1978. V. 33, � 1. P. 177�186.2. Vasin A.A., Morozov V.V. Investment deision under unertaintyand evaluation of Amerian options // International Journal ofMathematis, Game Theory and Algebra. 2006. V. 15, � 3. P. 323�336.3. Shiryaev A.N. Optimal Stopping Rules. New-York: Springer-Verlag, 1978.



OR in �nane and banking 1234. Broadie M., Detemple J. The valuation of Amerian optionson multiple assets // Mathematial Finane. 1997. V. 7, � 3.P. 241�285.On VaR-type risk measures underhedging of Amerian ontingent laims∗A.I. SolovievLomonosov Mosow State University, Mosow, RussiaIn this study we researh game problems between seller and buyerof an Amerian ontingent laim, disuss properties and optimizationomplexity of value-at-risk measure and expeted shortfall and developdeomposition methods to solve these problems muh more faster.We onsider a multiperiod model of the �nanial market whih leadsto a large sale nature of the given problems beause a number ofbuyer's strategies grows overexponentially. Therefore, deomposition ofthese games turns out to be our fundamental goal. As for the mainoptimization problem, we look for the optimal investment strategy whihprodues the minimal losses assoiated with imperfet (or inomplete)hedging of Amerian ontingent laim. It onsists in �nding a minimaxvalue of a spei� zero-sum game.We suppose that seurity trading in �nanial market ours in deter-ministi moments of time and a market has a �nite number of senarios(however, it may be quite huge). There are no transation osts duringthe trades. The market onsists of a few tradable seurities with knownprobability distribution of pries. One seurity is riskless (a bank depositor a bond), it has stritly positive pries. The number of risky seurities(stoks) an be any.The set of states N of the market has a tree struture. It is dividedinto pairwise disjoint subsets of states Nt whih may our at spei�time moments t = 0, ..., T. The set N0 ontains the only element � a rootof the tree denoted by 0. Every node n ∈ Nt, where t = 1, ..., T , has aunique parent node.We state a zero-sum game between two players: a seller of the ontin-gent laim and its buyer. The seller is an investor in wide sense, he buildsa trading strategy to hedge the Amerian ontingent laim. The buyer
∗The reported study was funded by RFBR aording to the researh projet No.16-31-00070 mol_a.



124 OR in �nane and bankingexerises the laim in some moment of time (i.e. obliges the seller to paythe laim value using his right spei�ed in a ontrat).The main feature of an Amerian ontingent laim is an unertainmoment of exerise. So, Amerian laims may be exerised by its buyerat any time t = {0, ..., T } up to expiration date. Exerise time is usuallyonsidered as an unertain fator in investment problems. Besides, itmeans stopping time for random proesses of the laim and the losses.Next, we de�ne strategies of players.Investor strategy is a self-�naning portfolio proess, i.e. he doesnot spend money and does not get any revenue from outside. Portfoliovalue proess V = {V (t)} orresponds to a trading strategy. A randomvariable V (t) takes values Vn equal to salar produts of prie andportfolio vetors. We suppose that there are no arbitrage opportunitiesin the market, i.e. there are no trading strategies, suh that the investorloses nothing and yields a positive pro�t with a positive probability. Weonsider only admissible trading strategies, the ones whih prevent theinvestor from ruin.Buyer's strategy is a moment of time when the ontingent laimis exerised. Let us desribe it with a random variable τ. For eahsequene of onseutive states (n0, ..., nT ) it produes the only state,where stopping ours. Let Nτ be a set of these states. We show thata set of buyer's strategies grows overexponentially while a number oftrading periods T inreases.An Amerian ontingent laim is desribed with a non-negative sto-hasti proess F = {F (t)}. The examples of a ontingent laim arepayments on option, forward or futures ontrats. Portfolio strategyhedges an Amerian ontingent laim F exerised in time τ if theportfolio values Vn ≥ Fn for all n ∈ Nτ . Perfet hedging (with probabilityone) of an Amerian ontingent laim generally requires onsiderableinitial endowment from the seller.Suppose that the seller does not have a neessary sum for perfethedging and deides to manage with less initial endowment taking therisk of future losses. So, if the laim is exerised in state n ∈ N of themarket, then seller's losses are equal to (Fn −Vn)
+ = max{Fn −Vn; 0}.In the �rst part of this researh we propose value-at-risk (VaR) as arisk measure to estimate the losses from imperfet hedging. It is equalto the minimum value suh that the expeted losses do not exeed itwith a spei�ed probability. In other words, VaR orresponds to theamount of uninsured risk whih the seller an take; see [2℄. This measureis reommended primarily for monitoring market risks and e�etiveness



OR in �nane and banking 125of hedging strategies. VaR approah of risk estimation was also widelystudied in [3℄. We evaluate seller's losses in exerise time τ using thevalue-at-risk funtion:
VaRα

(
(F (τ)− V (τ))+

)
= min{B ∈ R |P

(
(F (τ) − V (τ))+ ≤ B

)
≥ α},where α is a preset level of signi�ane.We state the optimization problem from the seller's side to �ndan optimal investment strategy V whih imperfetly hedges ontingentlaim F and minimizes a loss funtion VaRα under unertain exerisetime τ. The given problem onsists in �nding a minimax value of thegame and an be formulated in the following way:

min
V

max
τ∈T

VaRα((F (τ) − V (τ))+)

Vn ≥ 0, ∀n ∈ N .We inorporate binary variables x whih haraterize the deisionsoupled with probability onstraints in a de�nition of VaR and formulatethe original problem as a mixed-integer programming problem. Then,we prove the existene of optimal trading strategy suh that x∗ has amonotoni nature over time. Namely, we show that
x∗(t) ≥ x∗(t+ 1), ∀ t = 0, ..., T − 1.Then, we analyze the similar optimization problem using expetedshortfall as a risk measure (see [1℄) and disuss this problem from thebuyer's perspetive. It allows us to take into onsideration not only thefat of losses but the amount of them as well. Here the problem onsists in�nding maximin value. We show that onsidered utility funtions usuallybut not always have saddle points.The obtained results allow to substantially derease a number ofonstraints in the original problem and let us turn to an equivalentmixed integer problem with admissible dimension. Thus, we exlude theunertainty assoiated with the time of exerising the ontingent laim.The outomes of this study an be useful for software systemsdevelopment in �nanial institutions whih deal with valuation andhedging of ontingent laims, building trading strategies. Considerationof disrete models of a �nanial market for dealing with investmentproblems allowed to apply methods of mathematial programming andgame theory.



126 OR in �nane and bankingReferenes1. Aerbi C. and D. Tashe. Expeted Shortfall: A Natural CoherentAlternative to Value at Risk // Eonomi Notes. 2002. V. 31, N 2.P. 379-388.2. Rokafellar R.T. and S. Uryasev. Optimization of onditionalvalue-at-risk // Journal of Risk. 2000. V. 2, N 3. P. 21�41.3. Rokafellar R.T. and S. Uryasev. Conditional value-at-risk forgeneral loss distributions // Journal of Banking & Finane. 2002.V. 26. P. 1443�1471.



OR in insurane andrisk-management
Impat of risky investments on the solvenyof insurers in a model with stohastipremiumsT.A. Belkina*, N.B. Konyukhova**, and S.V. Kurohkin***Central Eonomis and Mathematis Institute of RAS,**Dorodniyn Computing Center of RAS FRC CSC of RAS,Mosow, RussiaWe onsider the mathematial insurane model with stohastipremiums and risky investments; for its detailed and ompleteinvestigation, see [1�3℄ and referenes therein.1. For the modi�ed Cram�er-Lundberg model with stohastipremiums, the ontinuous-time risk proess has the form

Rt = u+

N1(t)∑

i=1

Ci −
N(t)∑

j=1

Zj , t ≥ 0. (1)Here, Rt is the surplus of an insurane ompany at time t; u is theinitial surplus (IS); the �rst sum on the right-hand side represents theaggregate premiums up to time t;N1(t) is a homogeneous Poisson proess(HPP) with intensity λ1 > 0 (EN1(t) = λ1t, N1(0) = 0) that, for any
t > 0, determines the number of premiums harged over the time interval
(0, t]; C1, C2,. . . are independent identially distributed (IID) randomvariables with a distribution funtion G(y) (G(0) = 0, EC1 = n < ∞)that determine the premium sizes and are assumed to be independent of
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N1(t); and the seond sum is the aggregate laims; N(t) is a HPP withintensity λ > 0 (EN(t) = λt, N(0) = 0) that, for any t > 0, determinesthe number of laims over the time interval (0, t]; Z1, Z2,. . . are IIDrandom variables with a distribution funtion F (x) (F (0) = 0, EZ1 =
m < ∞) that determine the laim sizes and are independent of N(t).The aggregate premium and aggregate laim proesses are also assumedto be independent.Let now the surplus be invested ontinuously in stoks with priesdesribed by the stohasti di�erential equation (SDE) dSt = St(a dt+
b dwt), t ≥ 0. Here, St is the stok prie at time t, 0 < a is theexpeted stok return rate, 0 < b is the volatility parameter, and {wt}is a standard Wiener proess, or a Brownian motion.Then the dynamis of the surplus (resulting risk proess) is desribedby the initial value problem for an SDE:

dXt = Xt (a dt+ b dwt) + dRt, t ≥ 0, X0 = u. (2)Here, Xt is the portfolio value at time t and Rt is the risk proess (1).As a measure of the solveny of an insurane ompany, we usethe survival probability (SP) ϕ(u) (as a funtion u) in in�nite time:
ϕ(u) = P {Xt ≥ 0, t > 0}, where X0 = u for u ≥ 0; for u < 0, we set
ϕ(u) ≡ 0.The equation for ϕ(u) of the resulting risk proess (2) has the form:

(b2/2)u2ϕ′′(u) + auϕ′(u) = λ
[
ϕ(u)−

∫ u

0 ϕ(u − x)dF (x)
]
+

+λ1
[
ϕ(u)−

∫∞
0 ϕ(u + y)dG(y)

]
, u ∈ R+.2. Assuming that the premium and laim sizes have exponentialdistributions, F (x) = 1−exp (−x/m), G(y) = 1−exp (−y/n), m,n > 0,we formulate the onstrained singular nonloal problem (see [1,3℄):

(b2/2)u2ϕ′′(u) + auϕ′(u)− λ[ϕ(u)− (Jmϕ)(u)]−

−λ1[ϕ(u)− (Inϕ)(u)] = 0, u > 0,
(3)

| lim
u→+0

ϕ(u)| <∞, lim
u→+0

[uϕ′(u)] = 0, (4)
(λ+ λ1) lim

u→+0
ϕ(u) = λ1(Inϕ)(0), (5)

0 ≤ ϕ(u) ≤ 1 ∀u ∈ R+, (6)
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lim

u→+∞
ϕ(u) = 1, lim

u→+∞
ϕ′(u) = 0. (7)Here, Jm and In are Volterra and non-Volterra integral operators,respetively,

(Jmϕ)(u) =
1

m

∫ u

0

ϕ(u− x) exp (−x/m)dx,

(Inϕ)(u) =
1

n

∫ ∞

0

ϕ(u + y) exp (−y/n)dy,where Jm, In: C[0,∞) → C[0,∞) and C[0,∞) is the linear spae ofontinuous bounded funtions on R+.The theorem stated below follows from the results of [1�3℄.Theorem. Let all the parameters a, b2, n, m, λ, λ1 be �xed positiveonstants, and let the stok reliability ondition be satis�ed: 2a/b2 > 1.Then the following assertions hold:(I) The onstrained singular nonloal problem (3)�(7) has a uniquesolution ϕ(u), it is a nondereasing funtion on R+ and indeeddetermines the SP in the onsidered insurane model.(II) As u → +0, the behavior of the solution derivatives depends onthe relations between the parameters in partiular on a sign of the "riskfator" ir = a(m− n) + λ1n − λm: (1) If λ + λ1 > a, then there existsa �nite limu→+0 ϕ
′(u) = D1; moreover, (a) | limu→+0 ϕ

′′(u)| <∞ if andonly if λ + λ1 > b2 + 2a; more preisely, in this ase limu→+0 ϕ
′′(u) =

D1D2 = −D1 ir/[mn(λ+ λ1 − b2 − 2a)], so that, if D1 > 0, then D2 ≤ 0for ir ≥ 0 and D2 > 0 for ir < 0; (b) if λ + λ1 ≤ b2 + 2a, then ϕ′′(u)is unbounded, but integrable at zero. (2) If a ≥ λ+ λ1, then ϕ′(u) is notbounded as u→ +0, but remains integrable at zero.(III) For large u, the solution ϕ(u) an be represented as
ϕ(u) = 1−K u1−2a/b2 [1 + o(1)], u→ ∞,where K > 0 is a onstant (in general the value of K annot be foundby loal analysis methods).(IV) If λ + λ1 > b2 + 2a and ir < 0, then ϕ′(u) reahes a positivemaximum at some point u = ũ > 0, while the solution ϕ(u) has anin�etion at this point (it is the most risk ase).The study of this problem demonstrates that investments in riskyassets for small and large IS values have opposite e�ets. For large ISvalues, the use of risky assets at a onstant investment portfolio struture



130 OR in insurane and risk-managementis not favorable from the point of view of survival, while, for small ISvalues, risky assets are an e�etive tool for minimizing the overall riskand, hene, for inreasing the solveny of the insurer.Referenes1. Belkina T.A., Konyukhova N.B., and Kurohkin S.V. Singularboundary value problem for the integrodi�erential equation in aninsurane model with stohasti premiums: Analysis and numerialsolution// Comput. Math. Math. Phys. 2012. V. 52. � 10.P. 1384�1416.2. Belkina T.A. Risky investment for insurers and su�ienytheorems for the survival probability// Markov Proesses Relat.Fields. 2014. V. 20. P. 505�525.3. Belkina T.A., Konyukhova N.B., and Kurohkin S.V. Dynamialinsurane models with investment: Constraint singular problemsfor integrodi�erential equations// Comput. Math. Math. Phys.2016. V. 56. � 1. P. 47�98.Risky investments and survival in the dualrisk modelT.A. Belkina*, N.B. Konyukhova**, and B.V. Slavko****Central Eonomis and Mathematis Institute of RAS,**Dorodniyn Computing Center of RAS FRC CSC of RAS,***National Researh University - Higher Shool of Eonomis,Mosow, RussiaWe onsider the dual risk model (see, e.g., [1℄), where the surplus orequity of a ompany (in the absene of investments) is of the form
Rt = u− ct+

N(t)∑

k=1

Zk, t ≥ 0. (1)Here Rt is the surplus of a ompany at time t ≥ 0; u is the initialsurplus, c > 0 is the rate of expenses, assumed to be deterministi and�xed; N(t) is a homogeneous Poisson proess with intensity λ > 0 that,for any t > 0, determines the number of random revenues up to the time
t; Zk (k = 1, 2, ...) are independent identially random variables with adistribution funtion F (z) (F (0) = 0, EZ1 = m < ∞) that determinethe revenue sizes and are assumed to be independent of N(t).



OR in insurane and risk-management 131Let now the whole surplus be ontinuously invested into risky assetof whih prie St follows the geometri Brownian motion
dSt = µStdt+ σStdBt, t ≥ 0,where µ is the expeted return rate, σ is the volatility, Bt is a standardBrownian motion.Then the resulting surplus proess Xt is governed by the equation

dXt = µXtdt+ σXtdBt + dRt, t ≥ 0, (2)with the initial ondition X0 = u, where Rt is de�ned in (1).Denote ϕ(u) = P (Xt ≥ 0, t ≥ 0) the survival probability (i.e., theprobability that bankrupty will never happen).The in�nitesimal generator A of the proess Xt has the form
(Af)(u) = 1

2
σ2u2f ′′(u) + f ′(u)[µu− c]− λf(u) + λ

∫ ∞

0

f(u+ z) dF (z),for any funtion f from a ertain sublass of the spae C2(R+) of real-valued, twie ontinuously di�erentiable on (0,∞) funtions.For the ase of the exponential revenue sizes, we establish thefollowing statement.Theorem. Let F (z) = 1− exp (−z/m), all the parameters µ, σ2, m,
c, λ be �xed positive onstants, and let the stok reliability ondition besatis�ed: 2µ/σ2 > 1. Then the following assertions hold:(I) the survival probability ϕ(u) is the solution to the followingsingular boundary value problem for the integro-di�erential equation(IDE) with non-Volterra integral operator:

(Aϕ)(u) = 0, u > 0, (3)
lim

u→+0
ϕ(u) = 0, lim

u→∞
ϕ(u) = 1; (4)(II) this solution is unique and satis�es the onditions

0 ≤ ϕ(u) ≤ 1, u ∈ R+,

0 < lim
u→+0

ϕ′(u) <∞;(III) the following asymptoti representations are valid:
ϕ(u) ∼ D1

(
u+

∞∑

k=2

Dku
k/k

)
, u ∼ +0,



132 OR in insurane and risk-managementwhere D1 = ϕ′(+0), D2 = (µ− λ+ c/m) /c,

D3 =
[
D2(2µ+ σ2 − λ+ c/m)− µ/m

]
/(2c),

Dk+1 = [Dk(k(k − 1)σ2/2 + µk − λ+ c/m)−
−Dk−1((k − 2)σ2/(2m) + µ/m)]/(kc), k = 3, 4, . . . ,and

ϕ(u) = 1−Ku1−2µ/σ2

(1 + o(1)), u→ ∞, (5)where K > 0 is a onstant;(IV) as u → +0, the behavior of the solution derivatives dependson the relations between the parameters, in partiular on a sign of theoe�ient ir = (λ − µ)m − c: (1) if ir ≥ 0, then limu→+0 ϕ
′′(u) ≤ 0,moreover, the solution ϕ is onave on R+; (2) if ir < 0, then

limu→+0 ϕ
′′(u) > 0, the solution ϕ is onvex in a some neighborhood ofzero and has an in�exion point.For the orresponding results to the lassial Cram�er-Lundberg riskmodel, see, e.g., [2℄. The asymptoti representation (5) for the survivalprobability of the proess (2) (in the dual risk model) with exponentialdistribution of the revenue sizes was obtained earlier in [3℄, where therenewal theory was used to obtain some upper and lower asymptotibounds for the ruin probability. The regularity of the survival probabilitywas studied in [3℄ using a method based on integral representations. Notehere that the dual model ase is rather di�erent from the lassial asebeause the hange of two signs to the opposite ones in the equationde�ning the dynamis of the reserve leads to speial tehnial ompli-ations (see [3℄ in details). We use other approah based on so alledsu�ieny theorem for the survival probability and the existene theoremfor the orresponding singular problems for IDEs (see [4℄). This uni�edapproah eliminates need to proof regularity of the survival probability aswell as to use its upper and lower bounds. Moreover, the solving of abovesingular problem for IDE leads to alulation of the survival probabilityon all non-negative semi-axis. We redue the problem (3),(4) to a ertaininitial problem from in�nity for some seond order ordinary di�erentialequation with respet to the derivative of the survival probability witha normalizing ondition. As a result of alulations, we onlude inpartiular that if the value of safety loading (λm − c) in the model (1)is negative or su�iently small and the surplus is small too, then theuse of the risky investments allows to inrease signi�antly the survivalprobability.



OR in insurane and risk-management 133Referenes1. Albreher H., Badesu A., and Landriault D. On the dual riskmodel with tax payments// Insurane Math. Eonom. 2008. V. 42.P. 1086�1094.2. Belkina T.A., Konyukhova N.B., and Kurohkin S.V. Dynamialinsurane models with investment: Constraint singular problemsfor integro-di�erential equations// Comput. Math. Math. Phys.2016. V. 56. � 1. P. 47�98.3. Kabanov Yu. and Pergamenshhikov S. In the insurane businessrisky investments are dangerous: the ase of negative risk sums//Finane Stohast. (to appear).4. Belkina T. Risky investment for insurers and su�ieny theoremsfor the survival probability//Markov Proesses Relat. Fields. 2014.V. 20. P. 505�525.Optimization of marketing strategy of a �rmwith multiple distribution points of goodsD.V. Denisov and V.V. LatiyLomonosov Mosow State University, Mosow, RussiaWe present the mathematial model of a �rm selling ertain produt.The feature of this �rm is the struture: the �rm is divided into severaldistribution units (for example, department stores) eah of whih aimsto ahieve the best sales performane in omparison with other units.Eah point has its own marketing budget, approved by the head o�e,whih an not exeed the total marketing budget. The overall aim of theompany is ¾fair¿ development of all units. Hene, there is the followingproblem of the budget alloation for all units i in the set A:
{

pDi(c)− ci → max
ci∑

i∈Aci ≤ C0where p is the prie of produt, Di(c) and ci are the demand for produtand ommerial expenses for unit i aordingly, C0 is the budget. Thus,there is a kind of ompetition between units for share of the budget.The main results of this paper are 1) the proof that there is the uniquespeial solution of desribed problem and 2) the proof that the problemof ¾fair¿ marketing budget alloation is equivalent to the problem ofmaximizing the total pro�t:
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{ ∑

i∈A(pDi(c)− ci) → max
c=(ci)i∈A∑

i∈Aci ≤ C0

.Referenes1. von Heusinger A., Kanzow C. Optimization reformulations ofthe generalized Nash equilibrium problem using Nikaido�Isoda-type funtions // Tehnial Report, Institute of Mathematis,University of Wurzburg, Wurzburg, 2006.2. Bass F.M., Krishnamoorthy A., Prasad A., Sethi S.P. Generi andbrand advertising strategies in a dynami duopoly // MarketingSiene 24 (4) (2005) 556-568.



Various appliations of OR
The two-level model of environmentalprotetionV.A. Gorelik and T.V. ZolotovaDorodniyn Computing Centre, FRC CSC RAS, Finanial Universityunder the Government of the Russian Federation, Mosow, RussiaThe proposed regulating mehanisms use uni�ed and di�erentiatedenvironmental payments under the presene or absene of quotas and�nes ontrol.Suppose that the regional enter may regulate eologial paymentrates p = (p1, . . . , pm) (redution of payment may be a result ofo�setting funds or budget exemptions), where pj is fee for a negativeimpat on unit volume yj of j-th pollutant, j=1, . . . , m. Assume thatthe volume of the pollutant is proportional to the value of the relevantprodution fator yij = γijxi =

∑S
s=1 γijsxis, where γij = (γij1, . . . ,

γijs, . . . , γijS) is the vetor of proportional oe�ients for j -th pollutant,
γis = (γi1s, . . . , γijs, . . . , γims) is the vetor of proportional oe�ientsof all pollutants for i-th enterprise, applying s-th prodution fator,
xi = (xi1, . . . , xis, . . . , xiS) is the vetor of prodution fator of i-th enterprise. Let Ki, i=1, . . . , n, be �nanial resoures of enterprises,
q = (q1, . . . , qS) be the vetor of pries of prodution fators (resoures).Then the set of ontrol of i-th enterprise is Xi(p) = {xi|Pxi ≤ Ki, xi ≥
0}, i=1, . . . , n, where

P = (q1 +
m∑

j=1

pjγij1, ..., qs +
m∑

j=1

pjγijs, ..., qS +
m∑

j=1

pjγijS).Output of eah enterprise is de�ned by the vetor prodution funtion
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fi(xi), satisfying onditions fi(0) = 0, ∂fi(xi)

∂xis
> 0, ξ ∂2fik(xi)

∂x2
i

ξ < 0 ∀ξ 6=
0, where fik(xi) is k -th omponent of the vetor funtion fi(xi).If i is the vetor of pries for all produts of i-th enterprise, thenthe problem of maximizing its gross inome is

Gi(xi) = Aifi(xi) → max
xi∈Xi(p)

, (1)Its solution is the optimal strategy of the i-th enterprise x0i (p).Let the enter seeks to inrease the total gross inome of enterprises,i.e. the target funtion of the enter is F (xi) =∑n
i=1 αiGi(xi), where αiare positive weights, for example, tax payments to the regional budget. Itis also assumed that the enter interests in a rational use of the region'sresoures (energy, natural, labor). Then the problem of the enter is

F (x0(p)) =
n∑

i=1

αiGi(x
0
i (p)) → max

p|
∑

n
i=1 x0

i (pi)≤X
, (2)where X is the limit of resoures amount. The solution of problem (2)gives the optimal strategy of the enter p0.Let's onsider the problem of entralized sheme ontrol

F (x) =

n∑

i=1

αiGi(xi) → max
x|

∑
n
i=1 xi≤X

, (3)its solution is vetor x∗i = (x∗i1, . . . , x
∗
is, . . . , x

∗
iS).We introdue the Lagrange funtion for problem (3) L(x, µ) =

=
∑n

i=1 αiGi(xi) + µ(X −∑n
i=1 xi), where µ = (µ1, . . . , µS) is thevetor Lagrange multiplier, and onsider for i-th element of lower-levelthe system of linear equations with unknown ki, pi = (pi1, . . . , pim):

kiµs = qs +

m∑

j=1

pijγijs, s = 1, ..., S, Ki = kiµx
∗
i . (4)Denote p0i environmental payments vetor for i-th enterprise, de�nedby legislation.Theorem 1. Let funtions Gi(xi), i=1, . . . , n, be ontinuous,stritly onave with respet to all their variables, and have ontinuouspositive derivatives with respet to xis, the system of linear equations (4)has positive solution suh that pi ≤ p0i, i = 1, . . . , n. Then by hoosingdi�erentiated environmental payments pi for lower-level elements in



Various appliations of OR 137problem (2) the enter provides the global maximum of its riterion, i.e.ahieves perfet reoniliation of interests.Assume that the enter has the ability to assign only uni�ed environ-mental p and additionally permissible levels of pollution (quotas) and�nes for exeeding these quotas. The amount of �nes zij per unit for theexess of j -th type of pollution and quotas βi = (βi1, . . . , βij , . . . , βim)determined by the enter for eah enterprise satisfy onditions zij ≥ 0,
βi ≥ 0, i=1, . . . , n,∑n

i=1 βij = Bj , where Bj � is �xed value, means themaximum permissible level of pollution by j -th indiator for the wholeregion. Denote zi = (zi1, . . . , zim), z = (z1, . . . , zn), β = (β1, . . . , βi,
. . . , βn). The target funtion of the enter is F (x) =∑n

i=1 αiGi(xi).As a �ne funtion we take the total exess on all types of pollution.Then the problem of i-th enterprise is
Aifi(xi) → max

xi∈X′
i(p,zi,βi)

, (5)
X ′

i(p, zi, βi) = {xi|Pxi +
m∑

j=1

zij max(0, γijxi − βij) ≤ Ki, xi ≥ 0}.We introdue the vetor of the maximum permissible levels exeeds
wi = (wi1, . . . , wim). Then problem (5) takes form

Gi(xi) = Aifi(xi) → max
(xi,wi)∈Xi(p,zi,βi)

, (6)
Xi(p, zi, βi) = {(xi, wi) ≥ 0|γijxi − βij ≤ wij ,

Pxi +
∑m

j=1 zijwij ≤ Ki, j = 1, ..., m}. Let x0i (p, zi, βi) be the solutionof problem (6). The problem of the enter optimal ontrol is
n∑

i=1

αiGi(x
0
i (p, zi, βi)) → max

(p,z,β)∈Q
, (7)

Q = {(p, z, β) ≥ 0| ∑n
i=1 βij = Bj , j = 1, ..., m,

∑n
i=1 x

0
i (p, zi, βi) ≤

X}. Denote the enter optimal ontrol (p0, z0, β0).We introdue the Lagrange funtion for problem (7)
L̃i(xi, wi, λi1, λi2) = Gi(xi, wi, p, zi, βi)+λi1(Ki−Pxi−

∑m
j=1 zijwij)+∑m

j=1 λij2(wij + βij − γijxi), where λi1 ≥ 0, λi2 ≥ 0 are Lagrangemultipliers, λi2 is m-dimensional vetor.The problem of entralized ontrol has the form
n∑

i=1

αiGi(xi)) → max
x∈Q1

, (8)
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Q1 = {x|

n∑

i=1

γijxi ≤ Bj, j = 1, ..., m,

n∑

i=1

xi ≤ X}.Denote the solution of problem (8) by x∗i = (x∗i1, . . . , x
∗
is, . . . , x

∗
iS).Consider the system of equations:

λi1Px
∗
i +

∑m
j=1 λij2(βij − γijx

∗
i ) = λi1Ki, λi1Ps = µ1s/αi,∑m

j=1 λij2γijs = (
∑m

j=1 µ2j

∑n
i=1 γijs)/αi = 0,

i = 1, ..., n, s = 1, ..., S.

(9)Denote the �xed vetor of utmost environmental payments, de�nedby the legislation, by p0.Theorem 2. Let funtions Gi(xi), i=1, . . . , n, be ontinuous,stritly onave with respet to all their variables, and have ontinuouspositive derivatives with respet to xis, the system of linear equations(9) has positive solution λ1, λi2, p, β suh that p ≤ p0. Then by hoosinguni�ed environmental payments p, quotas β and �nes z and for lower-level elements in problem (9) the enter provides the global maximumof its riterion, i.e. ahieves perfet reoniliation of interests.Dynami model of olletive deision makingI.V. KozitsinMosow Institute of Physis and Tehnology, Mosow, RussianFederationIn this work the already onstruted in [2℄ model is generalizedon ontinuous time ase and applied to some elementary examples. In[1℄,[2℄ the author speaks about model, desribing proess of olletivedeision making. He �xed one state and rowd of people; everybodyfrom this rowd an go to this state or an remain. This state we willall main state. Everybody has his own opinion about swith to thisstate generated before ommuniation with other people. This opinionwill estimated by α−probability of preparedness to go to the main state.After ommuniation α will hange. This new probability we will all
p. Also everybody has his own harateristis desribing his individualfeatures. It means that member numbered i is desribed by:

• µi−probability of independent deision making;
• λij−probability of following member numbered j in deisionmaking;
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• αi;

• pi.Using this parameters author reated the main system of equations:
pi = µiαi + (1 − µi)

N∑

j=1

λijpj , i = 1, .., N. (1)Parameters λij are bounded by:
N∑

j=1

λij = 1, λii = 0, i = 1, ..N. (2)Here pi are variables. System (1) is generalized on ontinuous time ase:
dpi(t)

dt
= µi(αi−pi(t))+(1−µi)

N∑

j=1

λij(pj(t)−pi(t)), i = 1, .., N. (3)In system (3) αi are initial onditions and pi(t) are hanging during thetime. So we get Cauhy problem. This Cauhy problem has a uniqueorret (pi(t) ∈ [0, 1]) solution. If µi > 0 ∀i, time-independent solutionsof this system (3) are asymptotially stable. (3) is applied in quiteordinary ase: when rowd of people an be separated on three groups.First has negative opinion about main problem, seond has positiveopinion about main problem. The rest of people are not sure. As a resultI got solutions quite good oordinated with reality.Referenes1. Krasnoshekov P.S., Petrov A.A. Priniples of the onstrution ofmodels // M.: Fasis, 2000.2. Krasnoshekov P.S., The simplest mathematial model behavior.The psyhology of onformism // Mathematial modeling. 1998.10(7). P. 76�92.



140 Various appliations of ORSoialization as an e�etive mehanism ofstrategy alteration from individual toooperative: some psyhophysiologialaspets∗I.S. Menshikov1, 2, O.R. Menshikova1, A.O. Sedush1, T.S. Babkina1, 3,and E.M. Lukinova3
1MIPT, 2CC RAS, 3Skolteh, Mosow, RussiaThe lassial eonomi theory suggests that eonomi agents arerational, i.e. they make deisions aording the maximization of theirown pro�t. The experimental eonomis allows heking the validity ofthis statement in laboratory onditions. People evade rational strategiesin some situations and hoose the ones that lead to less pro�t at thispartiular moment, but have the perspetive bene�t for the soietyin general. These strategies we all ooperative, prosoial and leadingto equality. Sine the hoie of ooperative strategies ontradits therational hoie theory the question arises: what motivates some peoplestill follow the ooperative or prosoial strategies? An important questionthat still remains: how an we aomplish the strategy alteration fromindividual and rational to ooperative and prosoial?It is known from the soial psyhology that not all deisions aremade aording to the expeted future reward. There is some moralsatisfation from the fat that the trust is established in group and allpartiipants reeive the same payo�. Thus, we assume that the utilityfuntion depends on the soial omponent that overs the dissatisfationof reeiving fewer bene�ts.The MIPT Experimental Eonomis Laboratory and Skolteh areused to arry out all experiments. The treatments omprise knowledgefrom experimental eonomis and soial psyhology [1℄. Eah experimentonsists of a di�erent set of 12 students, pre-seleted before theexperiment to be unfamiliar with one another. In the laboratory, westudied the nature of suh soial qualities of a person as ooperativness,fairness, trust, gratitude in the groups soialized di�erently. We usedthe following 2x2 games: Prisoners' Dilemma, Ultimatum Game, andTrust Game. The researh goal is to �nd and study the mehanism thate�etively alter the partiipants strategies from individual to ooperativewithout using soial or material punishments. In ourse of our studyingwe disovered suh a mehanism - a group soialization.

∗This researh is supported by the grant RFFI 16-01-00633A.



Various appliations of OR 141Eah experiment is divided into 3 onseutive phases: anonymousgame phase in group of 12, soialization phase, and soialized game phasein group of 6 or 4. We use di�erent variants of soialization. Howeverwe always inlude the introdution step and division partiipants on twoor three equal groups and some teamwork in newly formed groups. Thegame phases onsist of a number of periods in a randomly formed pairs.On the �rst phase pairs form from the total sample of partiipants, onthe third phase pairs form within newly formed groups.To study hanges in people's attitudes after the soializationwe use an interdisiplinary approah ombining methods fromexperimental eonomis, soial psyhology and psyhophysiology. Duringthe laboratory experiment we measure the stabilograms [2℄ and RR-intervals of all partiipants. These data are ompared with eah other,with the behavioral harateristis and data from psyhologial tests [3-4℄. Results.1. Soialization promotes alteration of the partiipants' strategiesfrom individual to ooperative.2. The e�et of soialization is di�erent between sexes.The initial (before soialization) level of ooperation among females isequal or higher than among males (on average δ = .02, Nm = 202, Nf =
122, wiloxon-test, p-value = .05). Whereas after the soialization theperentage of ooperation among males is higher than among females (onaverage δ = .15, Nm = 202, Nf = 122, wiloxon-test, p-value = .001).3. The psyhologial type e�ets the hange of soial indiators aftersoialization. We �nd psyhologial types with the highest perentage ofthe transition from individual strategies before to ooperative strategiesafter soialization.4. The relationship between energy and entropy of the partiipantsduring an eonomi experiment, stress levels (an indiator, whihan be derived from measurements of RR-intervals) and psyhologialpersonality type is established.Referenes1. Berkman E.T., Lukinova E., Menshikov I., Myagkov M. Soialityas a Natural Mehanism of Publi Goods Provision. PLoS ONE,10(3), 2015, e0119685.2. Menshikov I.S. Laboratory analuses of the ontext in�uenes on thedeision making. // Proeedings of MIPT-2014.-6(4), pp 67-77.



142 Various appliations of OR3. Menshikova O.R., Menshikov I.S., Sedush A.O. Laboratory studiesof the di�erenes in the behavior of men and women beforeand after soialization. Oxford Journal of Sienti� Researh,2015, No.1. (9) (January-June). Volume III. "Oxford UniversityPress 2015, pp. 339-346.4. Menshikova O.R., Menshikov I.S., Sedush A.O. In�uene of threetypes of soialization on the behavior of men and women in soialand eonomi experiments. Proeedings of MIPT, 2015, pp 56-65.The asymptoti solution of a singularlyperturbed initial boundary value problemK.O. SemenovDorodniyn Computing Center of FRC IC RAS, Mosow, RussiaThis work involves the problems of solving the tasks arising in thestudy and desription of the proesses ourring in the laser targets [1℄.An understanding of suh proesses makes possible the implementationand ontrol of tehnologial proedures of thermo-nulear synthesis fromthe reation of laser target to their delivery to the plae of ignition andmanagement the launh of a thermonulear reation. The following isa mathematial model of the single-layer shells �lling with gas, whihis redued to linear singularly perturbed initial-boundary value problemof paraboli type [2℄. Proesses suh as ooling of the target and theproblem of degradation of the fuel layer by heating the target in thereator hamber by eletromagneti radiation [3℄ are redued to a similarlass of problems.Below we going to state the initial boundary value problem for thefuntion u(x, t), x ∈ [0, 1], t > 0, that satis�es the paraboli equation
ε
∂u

∂t
=

1

(1− δx)
2

∂

∂x
(1− δx)

2 ∂u

∂x
. (1)When formulating the problem the boundary onditions are one of themost important fator. Let us when x = 1

u(1, t) = µ(t), u(1, 0) = µ(0) = b, (2)
b - determined value and µ - unknown funtion, whih satis�es thefollowing ordinary di�erential equation

dµ

dt
= −α∂u(x, t)

∂x
|x=1 , α > 0. (3)



Various appliations of OR 143When x = 0 let
u(0, t) = γ · µ(t) + f(t), γ = const ≥ 0 (4)here f(t) - determined time funtion. Initial onditions are determinedby next statement

u(x, 0) = U(x), (5)ompatibility onditions are:
U(1) = b , U(0) = γb+ f(0). (6)Using the work [4℄ researh methods we are getting the above statedproblem deision in the following theorem form.Theorem. The initial boundary value problem (1)-(6) an be solvedand the solution an be desribed as follows

u(x, t) =

(
γ +

κx

1− δx

)
µ(t) +

(1− x)

(1− δx)
f(t)+

+
1

(1− δx)

[
vs

(
x,
t

ε

)
+ εw

(
x,
t

ε

)]
,where

vs

(
x,
t

ε

)
=

∞∑

n=1

cn exp

(
− π2n2t

ε

)
sin(πnx),and

µ(t) = µ0(t)+εM

(
t

ε
, ε

)
= e−β1t


b+ β

t∫

0

eβ1sf(s)ds


 b+εM

(
t

ε
, ε

)
.Note that funtions M,w are uniformly bounded and the initialonditions disrepany is ompensated with funtion vs

(
x, t

ε

) and isquikly dereased to zero while t inreasing.In onlusion, we should note one signi�ant fat that values ofparameter γ de�ne the proess a) γ = 1 �lling of target with gas; b)
γ = 0 the proess of ooling the gas inside the target.



144 Various appliations of ORReferenes1. Aleksandrova I.V., Belolipetskii A.A., Koresheva E.R. Currentinertial thermonulear synthesis program and state of ryogenifuel targets problem // The journal "Bulletin of the RussianAademy of Natural Sienes 2007. � 2. P. 15�20.2. Aleksandrova I.V., Belolipetskii A.A. Mathematial models for�lling polymer shells with a real gas fuel. // Laser and PartileBeams, 1999. Vol. 17, � 4. P. 701�712.3. Belolipetskii A.A., Malinina E.A., Semenov K.O. Mathematialmodel of fuel layer degradation when the laser target isheated by thermal radiation in the reator working hamber //Computational Mathematis and Modeling,2010. Vol. 21, � 1.P. 1�17.4. Belolipetskii A.A., Ter-Krikorov A.M. The solution of a singularlyperturbed initial-boundary value problems for linear paraboliequations //Works of MIPT, 2011. Vol. 3, � 1. P. 14�17.



Game-theoreti models
Searh numbers on graphs of blok strutureT.V. Abramovskaya and E.E. RzhevskayaSPbSU, Saint Petersburg, RussiaWe onsider a problem of disrete graph searhing. Invisible fugitive,whose movements are unpreditable, moves on graph. There is a set ofsearhers, whose goal is to �nd the fugitive. The onditions of apturefugitive depend on type of searh. In eah ase �nding the minimum k,suh that k searhers an apture any fugitive in graph G, is the goal.This minimum k is alled the searh number of graph G.This problem an be formulated di�erently. The edge is lear if itis guaranteed no fugitive on this edge, else the edge is ontaminated.Initially all graph's edges are ontaminated and the searhers' goal is tolear all graph's edges. There are three possible searh steps : to plaea searher on a node, to remove a searher from a node and to movea searher along an edge. A sequene of searh steps that results in alledges being lear, is a searh strategy. A strategy is monotone if noreontamination ever ours. If the set of lear edges always indues aonneted subgraph, a searh strategy is onneted. Conneted searhsimulates a situation, when searhers want to have a safe transmissionhannel.Three types of searh are onsidered: edge searh, mixed searh andonneted mixed searh. Their searh numbers are denoted by s(G),mixs(G), mixs(G). The �rst formulation of edge searhing problem wasgiven by N.N. Petrov in [1℄ and T. Parsons in [2℄. A searher musttraverse the edge from one end�point to the other to lear the edge.The onditions of learing in mixed searh onsist of the ondition inedge searh and a new opportunity, whih is to plae searhers on the



146 Game-theoreti modelsboth edge's end�points. A lear edge e = (u1, u2) is preserved fromreontamination if one of these statements is true for ui, i = 1, 2: eithersearher remains in ui, or all other edges inident to ui are lear. In otherwords, a lear edge e is reontaminated if there exists a path between eand ontaminated edge with no searher on any node of the path.Graph searhing problems are attrative for their orrespondenewith lassial width�parametres, serving as a model for important appliedproblems, whih were desribed in [3℄, [4℄. Connetion between graphsearhing and pebbling was found in [5℄. The relationships between searhnumbers was showed in [6℄. Let's mention several of them:
• mixs(G) − 1 6 pw(G) 6 mixs(G)

• mixs(G) 6 s(G) 6 mixs(G) + 1

• mixs(G) 6 cmixs(G)It is known, that it is enough to onsider monotone strategies if thegoal is to �nd s(G), mixs(G). In most ases, the lass of graphs thatan be leared by the edge searh strategy using at most k searhers isminor losed. This fat is true for the mixed searh, too. In ase of theonneted mixed searh, there is a ounterexample given in [7℄ and itis proven that the lass of graphs that an be leared by the onnetedstrategy using at most k searhers is not minor losed.We introdue a speial lass of graphs to researh onnetion betweenthe searh numbers s(G), mixs(G), cmixs(G). We propose de�nition ofa blok m× n. It is a graph that an be imagined suh as a grid m× n,where m is the number of rows and n is the number of olumns. Ablok have a boundary, whih is the subgraph indued with the set of allverties of degree less than 4. The boundary is divided into four parts(left, right, top and bottom) intuitively. For any blok G (size m × n)we show that s(G) = mixs(G) + 1 = cmixs(G) + 1 = min{m,n} + 1.Then we introdue an operation with two bloks B1 and B2 and all itby gluing. This operation means that all verties of one boundary's partof a blok B1 are merged with verties of one boundary's part of a blok
B2. Gluing of B1 and B2 is denoted by B1 ⊔ B2. Also we an de�ne aboundary of B1⊔B2 suh as a subgraph, whih ontains boundaries of B1and B2 exept merged verties whose degree was 3 in B1, B2. The gluingis intuitively generalized for any amount of bloks. Resulting graphs arealled graphs of blok struture. Now we an introdue a new blok searhon graphs of blok struture. For blok searh only strategies, whih have



Game-theoreti models 147a following property, are onsidered: on every steps there exists no morethan one blok, that have both lear and ontaminated edges exeptboundary's edges. The onditions of learing are equal to mixed searh.A blok searh number is denoted by bs(G).We researh gluing of two bloks B1 (m1×n1) and B2 (m2×n2). The�rst lass of resulting graphs ontains all graphs B1 ⊔B2, when the pairof verties of degree two is merged. Let m2 > m1 and all verties of rightboundary of B1 are merged with verties of left boundary of B2. For allgraphs in this lass it is showed that bs(G) = mixs(G) = cmixs(G) =
min{max{m1, n2},m2, n1+n2− 1}. The seond lass ontains the othergraphs B1 ⊔ B2. Without loss of generality, we assume that all vertiesof bottom boundary of B2 are merged with verties of top boundary of
B1. Let n2 < n1, then n1 = k − 1 + n2 + p − 1, where p − 1, k − 1are amount of top boundary's verties of B1, whih are situated leftand right of merged verties, and p > k. In this ase we show that
bs(G) = mixs(G) = cmixs(G) = min{max{2m1, n2},max{m1, n2 + k −
1}, n1,m1 +m2 − 1,m1 + n2}.Further we onsider operation deletion of the internal edges andverties of blok B1 (m1 × n1) from blok B2 (m2 × n2), where m2 >
m1, n2 > n1. For all resulting graph it is showed that mixs(G) =
cmixs(G) = min{M + m,m2, n2}, where m is the minimum numberof verties in a row (left and right parts) or in a olumn (bottom andtop parts) from boundary of deleted blok B1 to boundary of blok B2,
M is the maximum number of suh verties.Referenes1. Petrov N.N. A problem of pursuit in the absene of information onthe pursued // Di�erential Equations. 1982. V. 18, � 8, P. 1345�1352.2. Parsons T.D. Pursuit�evasion in a graph // Theory andappliations of graphs. Berlin: Springer. 1978. P. 426�441.3. Abramovskaya T.V., Petrov N.N. The theory of guaranteed searhon graphs // Di�erential Equations and Control Proesses. 2012.� 2 P. 9�65.4. Fomin F.V., Thilikos D.M. An annotated bibliography onguaranteed graph searhing // Theoretial Computer Siene.2008. V. 399, � 3. P. 236�245.5. Kirousis L.M., Papadimitriou C.H. Searhing and pebbling //Theoretial Computer Siene. 1986. V. 47, � 1. P. 205�218.



148 Game-theoreti models6. Boting Yang Strong-mixed Searhing and Pathwidth // Journal ofCombinatorial Optimization. 2007. V. 13, � 1, P. 47�59.7. Barriere L., Fraigniaud P., Santoro N., Thilikos D.M. Connetedand Internal Graph Searhing // In 29th Workshop on GraphTheoreti Conepts (WG). Springer-Verlag. 2003. P. 34�45.Generalization of binomial oe�ients tonumbers on the nodes of graphs∗A. Khmelnitskaya, G. van der Laan, and D. TalmanSaint-Petersburg State University, Russia,VU University Amsterdam, The Netherlands,Tilburg University, The NetherlandsThe topi of this work does not relate diretly to game theory,but the interest for this study is strongly in�uened by our studyof Shapley-type solution onepts for ooperative games with limitedooperation introdued by means of ommuniation graphs. If there areno restritions on ooperation, the lassial Shapley value assigns to eahplayer as a payo� the average of the players' marginal ontributions withrespet to all possible orderings of the players. However, in ase of limitedooperation represented by a graph not all orderings of the players arefeasible, but only those that are onsistent with the graph. When thegraph is a line-graph, the numbers of feasible orderings starting fromeah of its nodes are given by the binomial oe�ients.The triangular array of binomial oe�ients, or Pasal's triangle, isformed by starting with an apex of 1. Every row of Pasal's trianglean be seen as a line-graph, to eah node of whih the orrespondingbinomial oe�ient is assigned. We show that the binomial oe�ient ofa node is equal to the number of ways the line-graph an be onstrutedwhen starting with this node and adding subsequently neighboring nodesone by one. Using this interpretation we generalize the sequenes ofbinomial oe�ients on eah row of Pasal's triangle to so-alled Pasalgraph numbers assigned to the nodes of an arbitrary (onneted) graph.We show that on the lass of onneted yle-free graphs the Pasalgraph numbers have properties that are very similar to the properties of
∗The researh of Anna Khmelnitskaya was supported by RFBR (RussianFoundation for Basi Researh) grant �16-01-00713 and NWO (Duth Organizationof Sienti� Researh) grant �040.11.516. Her researh was done partially during herstay at Vrije Universiteit Amsterdam and the University of Twente, the hospitalityof both universities is highly appreiated.



Game-theoreti models 149binomial oe�ients. We also show that for a given onneted yle-freegraph the Pasal graph numbers, when normalized to sum up to one, areequal to the steady state probabilities of some Markov proess on thenodes. Properties of the Pasal graph numbers for arbitrary onnetedgraphs are also disussed. Beause the Pasal graph number of a nodein a onneted graph is de�ned as the number of ways the graph anbe onstruted by a sequene of inreasing onneted subgraphs startingfrom this node, the Pasal graph numbers an be seen as a measure ofentrality in the graph.Controlled dynamisin multiriteria optimization∗E.V. KhoroshilovaLomonosov Mosow State University, CMC Faulty, Mosow, RussiaA mathematial model of terminal ontrol with two basiomponents: a ontrolled dynamis and a boundary value problem inthe form of multiriteria equilibrium model, is onsidered. The boundaryvalue problem desribes a ontrolled objet situated in a equilibriumstate. Under the in�uene of external disturbanes the objet loses itsstate of stability and must be returned to equilibrium. The saddle pointapproah was used to do this, and the extraproximal method was appliedto �nd a solution. The onvergene of the method to solution was proved.Boundary value problem. A group of m partiipating ountriesreates a ommunity for the realization of some eonomi projet. Itis assumed that by the time of the ommunity reation, the memberountries have already identi�ed their interests and objetives in theprojet, set types and amount of resoures required to partiipate inintegration. Interests of eah of the partiipants are desribed by ostobjetive funtions fi(x1), i = 1,m, whih are de�ned on a ommonset of resoures X1 ⊆ Rn. Eah of partiipants wants to minimize theost of its ontribution to the overall projet. In the �rst approximation,this situation an be desribed as a simple multiriteria optimizationproblem:
f(x∗1) ∈ ParetoMin{f(x1) | x1 ∈ X1}, (1)where f(x1) = (f1(x1), f2(x1), ..., fm(x1)) is a vetor riterion; onvexsalar funtion fi(x1) is value of resoures that must be entered in the

∗This researh is supported by the Russian Foundation for Basi Researh (ProjetNo.15�01�06045-a).



150 Game-theoreti modelsommunity by i-th partiipant to implement the projet. The problem(1) generates a set of solutions in the form of vast variety of Pareto-optimal points.Along with the individual interests of partiipants there exist alsogroup interests, for example, the ost of the whole projet. For di�erentPareto-optimal estimates this ost is di�erent. It is natural to hoosethe projet with a minimum value. Thus, it is neessary to formulate amathematial model that takes into aount both the individual interestsof eah partiipant and group (olletive) interests of the ommunity.As a result, the following two-person game with Nash equilibrium wasproposed [1℄:
〈λ∗, f(x∗1)〉 ∈ Min{〈λ∗, f(x1)〉 | x1 ∈ X1}, (2)

〈λ− λ∗, f(x∗1)− λ∗〉 ≤ 0, λ ≥ 0. (3)Formulation of terminal ontrol problem.We add a ontrolleddynamis to the problem (2),(3) and formulate the following ommondynami model with multiriteria optimization boundary value problem:
d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1, x(t0) = x0, (4)

x(t1) = x∗1 ∈ X1 ⊆ Rn, u(·) ∈ U, (5)

U = {u(·) ∈ Lr
2[t0, t1] | ‖u(·)‖2Lr

2
≤ C}, (6)where x∗1 is x1-omponent of solution for multiriteria equilibriumproblem (2),(3). Here D(t), B(t) are ontinuous matries, x0 is initialondition, x(t) ∈ ACn

2 [t0, t1] (linear variety of absolutely ontinuousfuntions). The dynami model (2)-(6) desribes the transition ofontrolled objet from the initial state x0 to a terminal state x(t1) = x∗1,whih is given impliitly as the solution of (2),(3). We look for a ontrol
u∗(t) ∈ U suh that the trajetory x∗(t) has got by its right end to theappropriate omponent x∗(t1) of boundary value problem's solution.Saddle point approah to the problem. We assoiate theproblem (2)-(6) with the saddle-point-type funtion, whih will play arole similar to the Lagrange funtion in onvex programming:

L(λ, ψ(t);x1, x(t), u(t)) =

= 〈λ, f(x1)−
1

2
λ〉+

∫ t1

t0

〈ψ(t), D(t)x(t) +B(t)u(t) − d

dt
x(t)〉dt, (7)



Game-theoreti models 151de�ned for all (λ, ψ(·)) ∈ Rm
+ × Ψn

2 [t0, t1], (x1, x(t), u(t)) ∈ X1 ×
ACn[t0, t1] ×U. In the ase of regular onstraints, the funtion (7) alwayshas a saddle point (λ∗1, ψ∗(·);x∗1, x∗(·), u∗(·)), whih is the solution of theproblem. Therefore, the problem (2)-(6) is redued to �nding the saddlepoints of (7).Method to solve the problem. The dual extraproximal methodthat guarantees the onvergene to the solution of saddle point problem(2)-(6), has been applied [1℄:

λ̄k = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk1)−

1

2
λ〉 | λ ≥ 0

}
, (8)

ψ̄k(t) = ψk(t) + α

(
D(t)xk(t) +B(t)uk(t)− d

dt
xk(t)

)
, (9)

(xk+1
1 , xk+1(·), uk+1(·)) = argmin

{
1

2
|x1 − xk1 |2 +

+α〈λ̄k, f(x1)−
1

2
λ̄k〉+ 1

2
‖x(t)− xk(t)‖2 + 1

2
‖u(t)− uk(t)‖2 +

+ α

∫ t1

t0

〈ψ̄k(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt

}
, (10)

λk+1 = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk+1

1 )− 1

2
λ〉 | λ ≥ 0

}
, (11)

ψk+1(t) = ψk(t) + α

(
D(t)xk+1(t) +B(t)uk+1(t)− d

dt
xk+1(t)

)
, α > 0,

(12)where a minimum in (13) is omputed in all (x1, x(·), u(·)) ∈ X1 ×
ACn[t0, t1]×U. A similar approah was onsidered in [2℄.Theorem (on onvergene of the method). If the solution ofequilibrium problem (2)-(6) exists, funtions fi(x1), i = 1,m, areonvex and subjet to Lipshitz ondition with onstant L, then thesequene generated by the dual extraproximal method (8)-(12) with theparameter α, satisfying the ondition 0 < α < α0, where α0 is a de�nedonstant, ontains a subsequene that onverges to one of the solutions
(λ∗, ψ∗(·);x∗1, x∗(·), u∗(·)) of the problem. In this ase, the onvergenein ontrols is weak, the onvergenes in phase and onjugate trajetories(as well as in terminal variables) are strong.



152 Game-theoreti modelsReferenes1. Antipin A.S., Khoroshilova E.V. Multiriteria boundary valueproblem in dynamis // Trudy Instituta matematiki i mekhanikiUrO RAN. Yekaterinburg, 2015. V. 21, � 3. P. 20�29 (in Russian)2. Khoroshilova E.V. Extragradient-type method for optimal ontrolproblem with linear onstraints and onvex objetive funtion //Optimization Letters. Springer Verlag, 2013. V. 7, � 6. P. 1193�1214. On a onstrutiongenerating potential games∗N.S. KukushkinDorodniyn Computing Centre, FRC CSC RAS, Mosow, RussiaStrategi games are onsidered where eah player's total utility isthe sum of loal utilities obtained from the use of ertain �failities.�All players using a faility obtain the same utility therefrom, whihmay depend on the identities of users and on their behavior. If aregularity ondition is satis�ed by every faility, then the game admitsan exat potential [1℄; both ongestion games [2℄ and games withstrutured utilities [3℄, as well as games of soial interations onsideredin [4℄, are inluded in the lass and satisfy that ondition. Underadditional assumptions the potential attains its maximum, whih is aNash equilibrium of the game.A strategi game Γ is de�ned by a �nite set N of players, and, foreah i ∈ N , a set Xi of strategies and a real-valued utility funtion uion the set XN :=
∏

i∈N Xi of strategy pro�les. We denote N := 2N \ {∅}and XI :=
∏

i∈I Xi for eah I ∈ N .A funtion P : XN → R is an exat potential of Γ if
ui(yN )− ui(xN ) = P (yN )− P (xN )whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. If x0N ∈ XN maximizes

P over XN , then, obviously, x0N is a Nash equilibrium.A game with additive ommon loal utilities (an ACLU game) mayhave an arbitrary �nite setN of players and arbitrary sets of strategies Xi

∗This researh is supported by the Russian Foundation for Basi Researh(projet 14-07-00075).



Game-theoreti models 153(i ∈ N), whereas the utilities are de�ned by the following onstrution.First of all, there is a set A of failities ; we denote B the set of all(nonempty) �nite subsets of A. For eah i ∈ N , there is a mapping
Bi : Xi → B desribing what ombination of failities player i uses whenhoosing xi. Every strategy pro�le xN determines loal utilities at allfailities α ∈ A; eah player's total utility is the sum of loal utilitiesover hosen failities. The exat de�nitions need plenty of notations.For every α ∈ A, we denote I−α := {i ∈ N | ∀xi ∈ Xi [α ∈ Bi(xi)]}and I+α := {i ∈ N | ∃xi ∈ Xi [α ∈ Bi(xi)]}; without restritinggenerality, we may assume I+α 6= ∅. For eah i ∈ I+α , we denote Xα

i :=
{xi ∈ Xi | α ∈ Bi(xi)}. Then we set Iα := {I ∈ N | I−α ⊆ I ⊆ I+α }and Ξα := {〈I, xI〉 | I ∈ Iα & xI ∈ Xα

I }. The loal utility funtionat α ∈ A is ϕα : Ξα → R. For every α ∈ A and xN ∈ XN , we denote
I(α, xN ) := {i ∈ N | α ∈ Bi(xi)} ∈ Iα. The total utility funtion of eahplayer i is

ui(xN ) :=
∑

α∈Bi(xi)

ϕα(I(α, xN ), xI(α,xN )).We all a faility α ∈ A regular if there is a real-valued funtion
ψα(·) de�ned for integer m between max{1,#I−α } and #I+α − 1 suhthat ϕα(I, xI) = ψα(#I) whenever I ∈ Iα, I 6= I+α , and xI ∈ Xα

I .In other words: whenever a regular faility α is not used by allpotential users, neither the list of users, nor their strategies matter, onlythe number of users.We all an ACLU game regular if so is every faility. Both ongestiongames and games with strutured utilities are regular ACLU games.Theorem 1. Every regular ACLU game admits an exat potential.Let a �nite set N of players be �xed. An autonomous faility αis de�ned by two subsets I−α ⊆ I+α ∈ N [I−α may be empty℄, a set
Xα

i of relevant strategies for eah i ∈ I+α , and a loal utility funtion
ϕα : Ξ

α → R, where Iα := {I ∈ N | I−α ⊆ I ⊆ I+α } and Ξα := {〈I, xαI 〉 |
I ∈ Iα & xαI ∈ Xα

I }, exatly as above. We all an autonomous faility αregular if it satis�es the same ondition.Let α be an autonomous faility, and let Γ be an ACLU game withthe same set N , a �nite set A suh that α /∈ A, and Xi∩Xα
i = ∅ for eah

i ∈ N . An extension of Γ with α is a strategi game Γ∗ satisfying theseonditions: N∗ = N ; A∗ = A∪{α}; for eah i ∈ N , X∗
i = Xi ∪Xα

i if i ∈
I+α and X∗

i := Xi otherwise, B∗
i (xi) = Bi(xi) for eah xi ∈ Xi, and, foreah xαi ∈ Xα

i , there is σi(xαi ) ∈ Xi suh that B∗
i (x

α
i ) = {α}∪Bi(σi(x

α
i ));



154 Game-theoreti modelswhenever I ∈ Iα and xαI ∈ Xα
I , there holds ϕ∗

α(I, x
α
I ) = ϕα(I, x

α
I );whenever β ∈ A, I ∈ Iβ , xI ∈ X∗β

I , and J := {i ∈ I | xi ∈ Xα
i }, thereholds ϕ∗

β(I, xI) = ϕβ(I, (xI\J , σJ (xJ ))).Theorem 2. An autonomous faility α is regular if and only if everyextension Γ∗ of a regular ACLU game Γ with α admits an exat potential.The range of Γ's an be restrited to ongestion games or games withstrutured utilities.To ensure that the potential P attains a maximum, some additionalassumptions are needed. The simplest approah would be to have Pupper semiontinuous and XN ompat. A ertain degree of subtlety isrequired, however, as was shown even in a partiular ase [4℄.Assumption 1. The set of failities A and eah strategy set Xi aremetri spaes; eah mapping Bi is ontinuous in the Hausdor� metri onthe target; for every α ∈ A and I ∈ Iα, the funtion ϕα(I, ·) : XI → Ris upper semiontinuous.For eah i ∈ N and m ∈ N, we denote Xm
i := {xi ∈ Xi | #Bi(xi) =

m}.Assumption 2. For eah i ∈ N and m ∈ N, either Xm
i = ∅ or Xm

iis a ompat subset of Xi.Assumption 3. For eah i ∈ N , Xm
i 6= ∅ only for a �nite numberof m ∈ N.For every α ∈ A, we denote I◦α :=

{
i ∈ I+α | ∃O

[
(O is open ) & α ∈

O & ∀β ∈ O [i ∈ I+β ⇒ β = α]
]}
; roughly speaking, I◦α is the set ofplayers in whose strategy sets α is topologially isolated.Our �nal assumption ombines some sorts of upper semiontinuity(of ϕα in α) and monotoniity (of ϕα �in I�).Assumption 4. For every α ∈ A, I ∈ Iα, and ε > 0, there is δ > 0suh that ϕα(I, xI) > ϕβ(J, yJ) − ε whenever β ∈ A \ {α}, J ∈ Iβ ,

xI ∈ Xα
I , yJ ∈ Xβ

J , J ⊆ I \ I◦α, and the distanes between α and β in Aas well as between xJ and yJ in XJ are less than δ.If A is �nite as, e.g., in a game with strutured utilities or in aongestion game, then Assumption 4 holds vauously sine I◦α = I+α ,and hene no J ∈ N ould satisfy the onditions.Theorem 3. Every ACLU game satisfying Assumptions 1�4possesses a (pure strategy) Nash equilibrium.Dropping any one of the assumptions makes the theorem wrong.



Game-theoreti models 155Referenes1. Monderer D., Shapley L.S. Potential games. Games and EonomiBehavior. 1996. V. 14. P. 124�143.2. Rosenthal R.W. A lass of games possessing pure-strategy Nashequilibria. International Journal of Game Theory. 1973. V. 2. P. 65�67.3. Kukushkin, N.S. Congestion games revisited. International Journalof Game Theory. 2007. V. 36. P. 57�83.4. Le Breton M., Weber S. Games of soial interations with loal andglobal externalities. Eonomis Letters. 2011. V. 111. P. 88�90.Epistemi approah to Bayesian routingproblemT. Matsuhisa∗Ibaraki Christian University, Hitahi-shi, Ibaraki 319-1295, Japan,IAMR, KarRC, RAS, Petrozavodsk, 185910, RussiaWe highlight on the role of sharing knowledge on the users' individualonjetures on the others' seletions of hannels in a Bayesian routingproblem. Let us onsider a Bayesian extension of KP-model, introduedas a network game by Koutsoupias and Papadimitriou [5℄, and let usstart to treat the simple KP-model onsisting of one storage S and nusers with whih eah has to use one of m hannels to onnet thestorage. Eah hannel l = 1, 2, · · · ,m has a given apaity cl. User iintends to send/reeive information with volume wi to/from the storage
S through hannel li. The Bayesian KP-model is given as an extensionof the KP-model equipped with a partition information struture.In the seminar talk, I onsidered the Bayesian KP-model withpartition information struture as follows. The users possess withthe same prior distribution on a state-spae. In addition they haveprivate information given by a partition information struture i.e., are�exive, transitive and symmetri binary relation on a state-spae.Eah user predits the other players' ations as the posterior of theothers' hoies of hannels given his/her information. I have proposedthe two extended notions of equilibria, expeted delay equilibrium andrational expetations equilibrium, in whih the former is given as thepro�les of individual onjetures suh as eah user maximizes his/her

∗Current ontat address: MRI BUSAIKU-BUHI Foundation for Sienti�Researh Tokiwa-ho 1-4-13, Mito-shi Ibaraki 310-0033, Japan.



156 Game-theoreti modelsown expetations of delay and the latter is de�ned by the pro�les ofonjetures suh as eah user minimizes his/her own expetations ofsoial ost respetively. Under the irumstane, In highlighting theepistemi feature I aim to give neessity ondition for these equilibriaas below:Common-Knowledge CaseTheorem 1[5℄. If all users ommonly know an expeted delayequilibrium, then the equilibrium yields a Nash equilibrium in the basedKP-model. If they ommonly know a rational expetations equilibrium,then the equilibrium yields a Nash equilibrium for soial ost in it.Common-knowledge plays essential role in the above theorem if thereare more than two users. In fat, for two users ase the theorem is stilltrue without ommon-knowledge assumption, however for 3 users ase itannot hold without the assumption. As well known, it is atually a verystrong assumption, So we would like to remove out it in our framework.Communiation CaseTo the purpose we adopt the ommuniation proess introdued byParikh and Krasuki [6℄ replaing ommon-knowledge. Let us nowstart that all users form a ommuniation network. Eah user sendsprivately his/her onjeture about the others' hoies of hannels tothe another user aording to the ommuniation network as messages,where the message onsists of information about his/her individualonjeture about the others' hoies. The reipient of the message has toupdates her/his private information struture by the message reeived.She/her has to revise her/his onjeture on the others' hoies, andsend the information about her/his revised onjeture to the anotheruser aording to the ommuniation network. The users ontinue toommuniate their private information of onjeture on the other' hoiesas so on. In this irumstane, we an show thatTheorem 2. In the revision proess of rational expetations equilibriumsaording to the ommuniation proess, the limiting onjetures yieldsa Nash equilibrium for soial ost. For the expeted delay equilibrium thesame holds true also.



Game-theoreti models 157ApprisalsUpper bounds for prie of anarhy. By extending the notion of theprie of anarhy to rational expetations equilibriums the upper boundof the prie of anarhy for some typial soial ost funtions may begiven as follows:Conjeture. In the ommuniation, onsider the limiting expeted delayequilibriums. Then the extended expeted soial osts for the linearsoial funtion aording to the the limiting expeted delay equilibriumis bounded by the ratio of the maximal apaity of the hannels by theminimal one; i.e., it is lesser than or equal to Maxni=1ci/Minni=1ci.Literatures Garing et al [2℄ is the �rst paper in whih Bayesian Nashequilibrium is treated. They analysis Bayesian extension of routinggame spei�ed by the type-spae model of Harsanyi [3℄ as informationstruture, and they olleted several results: (1) the existene andomputability of pure Nash equilibrium, (2) the property of the set offully mixes Bayesian Nash equilibria and (3) the upper bound of the prieof anarhy for spei� types of soial funtion assoiated with BayesianNash equilibria.In my work I modify their model by adopting arbitrary partitioninformation struture following Aumann [1℄ instead of the type-spaemodel. The merit of adopting information partition struture lies notonly in getting the lose onnetion to omputational logi but also ininreasing the range of its appliations in various �elds.It ends well by remarking on the assumption in the model. I havetreated the volumes in the Bayesian KP-model as indivisible goods,but we should treat it as divisible ones when KP-model is onsideredas a model of loud omputing system, beause the volumes will begiven as the volumes of information, whih is onsidered as divisible.Furthermore, it will have to arise several interesting problems toinvestigate in future agendas. Among others the most important is tostudy the several ore notions appeared in our framework of Bayesiangame. Referenes1. Aumann R.J. Agreeing to disagree// Annals of Statistis. 1976. V.4. P. 1236�1239.2. Garing M., Monien B., Tiemann K. Sel�sh routing withinomplete information// Theory of Computing Systems. 2008. V.42. P. 91�130.



158 Game-theoreti models3. Harsanyi J.C. Games with inomplete information played byBayesian players, I, II, III// Management Siene. 1967. V. 14.P. 159�182, 320�332, 468�502.4. Koutsoupias E., Papadimitriou C.H. Worst-ase equilibria// In:Meinel C. and Tison S.(eds). Proeedings of the 16th InternationalSymposium of Theoretial Aspet of Computer Siene. LetureNotes in Computer Siene. 1999. V. 1563. P. 404�413.5. Matsuhisai T. Sel�sh routing with ommon-knowledge. WorkingPaper. 2015.6. Parikh R., Krasuki P. Communiation, onsensus andknowledge// Journal of Eonomi Theory. 1990 V. 52. P.78�89.Minimax estimation of the parameter of thenegative binomial distribution∗V.V. Morozov and M.A. SyrovaLomonosov Mosow State University, Mosow, RussiaLet's onsider the minimax estimation problem of the parameter θof the negative binomial distribution (NBD) f(t|θ, r) = θr(1−θ)t(r)t/t!,
t = 0, 1, ..., where (r)t = r(r + 1) · · · (r + t − 1), t > 1, (r)0 = 1. Theparameter r > 0 is assumed to be known. We use the quadrati lossfuntion L(θ, d) = (θ − d)2. For the geometri distribution (r = 1) astatistial game was solved by G.N. Dyubin in [1℄. Here a similar solutionis obtained for r ∈ (0, 1). If r > 1, a numerial method is spei�ed for�nding a minimax estimator. When r > 2, the estimate, whih minimizesthe maximum risk among linear estimates of the form c1δ0 + c2, where
δ0 is an unbiased estimator, is onstruted.Problem. A statistiian observes a value t of the random variable Thaving NBD f(t|θ, r). A deision funtion δ : Z+ → [0, 1] is a strategyof the statistiian belonging to the set ∆ of all suh strategies. Afterthe substitution of the strategy δ in the loss funtion L and subsequentaveraging over f(t|θ, r), one obtains the risk funtion

R(θ, δ) = E[L(θ, δ(T ))|θ] = θr
∞∑

t=0

(r)t
t!

(1− θ)t(θ − δ(t))2.

∗The reported study was funded by RFBR aording to the researh projet� 16-01-00353 a.



Game-theoreti models 159In the statistial game G = 〈[0, 1],∆, R(θ, δ)〉 the �rst player (nature)maximizes the risk funtion R, and the seond player (statistiian) mini-mizes it. It's assumed that the nature may use mixed strategies ξ ∈ Ξ.Solution of the game for r ∈ (0, 1). Let θ0 ∈ (0, 1) be a root ofthe equation θ(2θr/2+ r+2) = r and λ0 = (r− (r+2)θ0)/(2θ
r+1
0 + r−

(r + 2)θ0). We denote by Iθ the indiator of point θ.Proposition 1. If r ∈ (0, 1), then ξ∗ = λ0Iθ0 + (1 − λ0)I1 and
δ∗(0) = (1 + 2/r)θ0, δ

∗(t) = θ0, t = 1, 2, ... are the optimal strategies ofthe players, and v = (1 − δ∗(0))2 is the value of the game G.Minimax linear estimator. A strategy of interest is the linearestimate δl, whih minimizes the maximum risk on ∆l = {c1δ0 +
c2|c1, c2 ∈ [0, 1]} (see [2℄). For any δ = c1δ0 + c2 ∈ ∆l risk funtion anbe written as F (θ, c1, c2) def= R(θ, δ) = (θ(1− c1)− c2)2+ c21(θrh(θ)− θ2),where

h(θ) =

∞∑

t=0

(r − 1)2t
t!(r)t

(1− θ)t =
r − 1

(1 − θ)r−1

(1−θ)/θ∫

0

zr−2

1 + z
dzis a generalized hypergeometri funtion. To �nd the strategy δl =

cl1δ0 + cl2, we solve the game Gl = 〈[0, 1], [0, 1]2, F (θ, c1, c2)〉. Considerthe following system of equations for the variables θ, c1, c2 :

Fc1(θ, c1, c2) = 0, Fθ(θ, c1, c2) = 0, F (θ, c1, c2) = F (0, c1, c2). (1)Lemma. For r > 2 the system of equations (1) has a unique solution.Proposition 2. For r > 2 let (θl, cl1, cl2) be the solution of (1). Denote
λl = cl2/(θ

l(1− cl1)). Then ξl = λlIθl + (1− λl)I0 and δl = cl1δ0 + cl2 areoptimal strategies for players and vl = (cl2)
2 is the value of the game Gl.An approximate solution of the game. Let's onsider r >

1. For integer N > 1 we de�ne a trunated strategy δN =
(δ(0), δ(1), ..., δ(N)) ∈ [0, 1]N+1 and the orresponding payo� funtion

RN (θ, δN ) = θr
N∑

t=0

(r)tt
!

(1− θ)t(θ − δ(t))2of the game GN = 〈[0, 1], [0, 1]N+1, RN (θ, δN )〉. The funtion RN isonvex in δN . Therefore in the game GN the nature may use mixed



160 Game-theoreti modelsstrategies of the form ξ =
∑m

i=1 aiIθi , where
m∑

i=1

ai = 1, ai > 0, i = 1, ...,m, 0 6 θ1 6 θ2 6 ... 6 θm 6 1, m 6 N + 2.The set of all suh strategies is denoted by Ξm. For eah strategy ξ ∈
Ξm the orresponding Bayesian strategy δξN = (E [Θ|t], t = 0, 1, ..., N)minimizes RN (ξ, δN ) for δN ∈ [0, 1]N+1, where the expetations E [Θ|t]are taken over the posterior distribution

ξ|t =
m∑

i=1

aiθ
r
i (1− θi)

tIθi

/ m∑

j=1

ajθ
r
j (1− θj)

t.To solve approximately the game GN , we �x the auray ε1 > 0 andhoose a value of m < N + 2. We have
vN = max

ξ∈Ξm
R(ξ, δξN ) = R(ξ∗, δξ

∗

N ) 6 vN 6 v̄N = max
θ∈[0,1]

R(θ, δξ
∗

N ).If inequality v̄N − vN 6 ε1 is not satis�ed, we inrease m and repeatthe alulations to ahieve the auray ε1. Note that for a given
ε1 a minimal required m grows with r. The following table shows theminimal m, whih ensures the auray ε1 = 10−8 :

r 2 3 4 5 6 7 8 9 10
m 10 12 14 21 25 26 28 30 32 .Using the found strategy δξ∗N let's de�ne a strategy δ∗ in the originalgame G :

δ∗(t) =

{
δξ

∗

N (t), 0 6 t 6 N,

δξ
∗

N (N), t > N.The strategy δ∗ realizes min
δ∈∆

max
06θ61

R(θ, δ∗) with ε > 0. To get ε, we �ndan upper bound for a ¾tail¿ of series R(θ, δ∗) :
∑

t>N

(r)t
t!
θr(1−θ)t(θ−δ∗(t))2 6 max

06θ61
θ2
(
1−

N∑

t=0

(r)t
t!
θr(1−θ)t

)
def
= ε2(N).Now we an take ε = ε1 + ε2(N). It should be noted that ε2(N)dereases slowly with growth of N. For example, if r = 4 ε2(200) ≈

0.00017, and ε2(1000) ≈ 0.000007. At large N the solution of the game
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GN requires a signi�ant amount of omputations. It is possible to redue
ε2(N) with the following method. The statistiian suggests that θ ∈
[θ, 1], where θ > 0 is a lower bound of the parameter θ. Then in games
G and GN one needs to hange the interval [0, 1] to [θ, 1], and alulate
ε2(N) as maximum on [θ, 1]. For example, if r = 4 and θ = 0.1 theimproved value of ε2(200) equals 10−8. So, the value of the game v is
0.01943937 with ε = ε1 + ε2(200) = 2 · 10−8.Referenes1. Dyubin G.N. The statistial game of the estimation of geometridistribution parameter// Game-theoretial questions. Leningrad:Nauka, 1978. P. 124�125.2. Ferguson T.S, Kuo L. Minimax estimation of a variane// Annalsof the Institute of Statistial Mathematis. 1994. V. 46, �2. P.295�308. Games with polynomials∗N.N. Petrov and V.V. PetrovaUdmurt State University, Izhevsk, Russia,Izhevsk Tehnial University, Izhevsk, RussiaThe following lass of antagonisti games is onsidered [1℄: the poly-nomial is given

f : f(x) = xm + a1x
m−1 + · · ·+ am−1x+ am. (1)Two players hange alternately one oe�ients ai by any real number,but eah oe�ient is used only one time.Payo� funtion of the �rst player (player who makes the �rst move)is determined by one of two following ways:a) H1(s1, s2) is the amount of di�erent real roots of the polynomial

f ; b) H2(s1, s2) = −H1(s1, s2)(s1 � is the strategy of the �rst player, s2 � is the strategy of theseond player).It means that in the ase a) the �rst player strives to that thepolynomial f had most of all di�erent real roots and in the ase b)the �rst player strives to that the polynomial f had least of all di�erentreal roots. The aim for seond player is opposite.
∗This researh is supported by RFFI (�16-01-00346).



162 Game-theoreti modelsLet vj(m, am) is value of the game with payo� funtion Hj of �rstplayer and with m-th degree polynomial (1), where am is onstant term.Theorem. That is true1. v1(2n+ 1, a2n+1) = v1(2n+ 1,−1) = 1 for all n > 1;2. v1(2n, a2n) = 2 for all n ≥ 1;3. v1(2n,−1) = 4 for all n ≥ 3, v1(4,−1) = 2;4. v2(2n, a2n) = 4 for all n ≥ 4, v2(4, a4) = 2;5. v2(2n,−1) = 2 for all n ≥ 2;6. 3 ≤ v2(2n+ 1,−1) ≤ 5 for all n ≥ 2, v2(3,−1) = 3.Referenes1. Petrov N.N. About the one polynomial game// MatematiheskayaTeoriya Igr i Ee Prilozheniya. 2012. V. 5(3). P. 58�71 (in Russian).Multistage bidding model with elements ofbargaining: extension for a ountable statespae∗A.I. PyanykhMosow State University, Mosow, RussiaWe onsider a simpli�ed model of a �nanial market with two playersbidding for one unit of a risky asset for n ≤ ∞ onseutive stages. Player1 (an insider) is informed about the liquidation prie s0 of the asset whilePlayer 2 knows only its probability distribution p. At eah stage playersplae integral bids. The higher bid wins, and an asset is transated tothe winning player. Eah player aims to maximize the value of her �nalportfolio.A model where the prie s0 has only two possible values {0,m} isonsidered in [1℄. It is redued to a zero-sum game Gn(p) with inompleteinformation on one side as in [2℄. In this model uninformed Player 2 usesthe history of Player 1's moves to update posterior probabilities overthe liquidation prie. Thus, Player 1 should �nd a strategy ontrollingposterior probabilities in suh a way that allows her to use the privateinformation without revealing too muh of it to Player 2. In [3℄ the modelis extended so that the liquidation prie an take any value s ∈ S = Z+aording to a probability distribution p = (ps, s ∈ S). It is shown thatwhen Dp is �nite, a game G∞(p) is properly de�ned. For this game thevalue and optimal players strategies are found.
∗The reported study was funded by RFBR aording to the researh projet �16-01-00353a.



Game-theoreti models 163In both [1℄ and [3℄ the transation prie equals to the highest bid.Instead we an onsider a transation rule proposed in [4℄, and de�ne atransation prie equal to a onvex ombination of proposed bids with aoe�ient β ∈ [0, 1]. A model with suh transation rule and two possiblevalues of the liquidation prie is studied in [5℄. Here those results arefurther extended for the ase of a ountable state spae.The model is de�ned as follows. At stage 0 a hane move hoosesa state of nature s0 ∈ S aording to the distribution p. At eah stage
t = 1, n players make bids it ∈ I, jt ∈ J where I = J = Z+. A stagepayo� in state s equals to

as(it, jt) =





(1− β)it + βjt − s, it < jt,

0, it = jt,

s− βit − (1− β)jt, it > jt.Player 1's strategy is a sequene of ations σ = (σ1, . . . , σn) where
σt : S×It−1 → ∆(I) is a mapping to the set of probability distributions
∆(I) over I. So, at eah stage of the game Player 1 randomizes hisbids depending on the history before stage t and the state s. Player2's strategy is de�ned as a sequene of ations τ = (τ1, . . . , τn) where
τt : J

t−1 → ∆(J). The payo� in this zero-sum game Gn(p) is de�ned as
Kn(p, σ, τ) = E(p,σ,τ)

n∑

t=1

as(it, jt).Let's denote distribution sets Θ(x) = {p′ ∈ ∆(S) : Ep′ = x} and
Λ(x, y) = {p′ ∈ ∆(S) : x < Ep′ ≤ y}. Similar to [3℄, it an be shown thatfor p ∈ Λ(k − 1 + β, k + β) a pure strategy τk de�ned as

τk1 = k, τkt (it−1, jt−1) =





jt−1, it−1 < jt−1,

jt−1, it−1 = jt−1,

jt−1, it−1 > jt−1,guarantees to Player 2 a payo� not greater than H∞(p) in game Gn(p).Funtion H∞(p) is pieewise linear with breakpoints at Θ(k + β) anddomains of linearity Λ(k − 1 + β, k + β). For distribution p suh that
Ep = k − 1 + β + ξ, ξ ∈ [0, 1), it equals to

H∞(p) = (Dp+ β(1 − β)− ξ(1− ξ))/2.



164 Game-theoreti modelsSine Dp is assumed �nite, the value H∞(p) is �nite as well. Hene anin�nitely long game G∞(p) an be onsidered.Let's denote L∞(p) a guaranteed payo� to Player 1 in game G∞(p),and px(l, r) ∈ Θ(x) a probability distribution taking only values l and r.It an be shown that Player 1 an guarantee herself for p = λp1+(1−λ)p2a payo� of at least λL∞(p1) + (1 − λ)L∞(p2). Sine every distribution
p an be represented as a onvex ombination of some px(l, r), provingthat H∞(p) = L∞(p) requires an expliit proof only for p = pk+β(l, r).Let's denote q = (qi, i ∈ I) a marginal distribution of Player 1's �rstbid and pi = (ps|i, s ∈ S) a posterior distribution over the liquidationprie given a bid i was made. Let's also denote σs

i a omponent of Player1's stage ation, i.e. a probability of making a bid i in state s. Then fromthe Bayes rule σs
i = ps|iqi/ps. Thus in order to de�ne a stage ation, itis su�e to speify q and (pi, i ∈ I).An optimal strategy for px(0,m) as desribed in [5℄ an be adjustedto pk+β(l, r) in the following way. For p = pl(l, r) and p = pr(l, r) Player1 uses bids l and r respetively with probability 1 at the �rst stageof the game. For p ∈

{
pk(l, r), pk+β(l, r)

} she uses a stage ation withparameters
pk(l, r) : qk = β, qk+1 = 1− β, pk = pk−1+β(l, r), pk+1 = pk+β(l, r),

pk+β(l, r) : qk = 1− β, qk+1 = β, pk = pk(l, r), pk+1 = pk+1(l, r).Applied reursively for respetive posterior probabilities at subsequentstages this strategy guarantees to Player 1 a payo� at least
L∞

(
pk+β(l, r)

)
=
(
(r − k − β)(k − l + β) + β(1 − β)

)
/2.This oinides with the value of H∞

(
pk+β(l, r)

). Thus the game G∞(p)has a value V∞(p) = H∞(p), and strategies desribed above are optimal.It must be noted that Player 2's strategy is surprisingly robust inregard to hanges in the payo� funtion. At the same time Player 1'sstrategy beomes more omplex. For initial p ∈ Θ(k) posterior probabil-ities in [3℄ form a symmetri random walk, i.e. posterior p′ will be eitherin Θ(k− 1) or Θ(k+1) with equal to 1/2 probabilities. This is no longertrue when β ∈ (0, 1). The strategy desribed above essentially di�ersfrom that in [3℄, e.g. it doesn't ollapse to that of [3℄ when β → 1.Referenes1. Domansky V. Repeated games with asymmetri information andrandom prie �utuations at �nane markets // International Jour-nal of Game Theory. 2007. V. 36, � 2. P. 241�257.



Game-theoreti models 1652. Aumann R.J., Mashler M.B. Repeated Games with InompleteInformation. Cambridge, Massahusetts: The MIT Press, 1995.3. Domansky V.C., Kreps V.L. Game theoreti bidding model: strate-gi aspets of prie formation at stok markets // The Journal ofthe New Eonomi Assoiation. 2011. V. 11. P. 39�62.4. Chatterjee K., Samuelson W. Bargaining under inompleteinformation // Operations Researh. 1983. V. 31, �5. P. 835�851.5. P'yanykh A.I. A Multistage exhange trading model with asym-metri information and elements of bargaining // Mosow Uni-versity Computational Mathematis and Cybernetis. 2016. V. 40,� 1. P. 35�40.Equilibria in dynami multiriteria games∗A.N. RettievaInstitute of Applied Mathematial Researh Karelian Researh Centerof RAS, Petrozavodsk, RussiaMathematial models involving more than one objetive seem moreadherent to the real problems. Often players have more that one goaland they an be not omparable. These situations are typial for game-theoreti models in eonomy and eology. Hene, multiriteria gameapproah helps to make deisions in multi-objetive problems.Shapley [4℄ introdued the onept of multiriteria games that aregames with vetor payo�s, and gave a generalization of lassial Nashequilibrium to Pareto equilibrium for suh games. In reent years,many authors have studied the game problem with vetor payo�s.Some onepts have been suggested to solve multiriteria games: in [5℄it was presented the notion of ideal Nash equilibrium, [1℄ onnetedmultiriteria game with potential game and [2℄ suggested E-equilibriumonept.Traditionally, equilibrium analysis in multiriteria problems baseson the stati or steady-state variant. For dynami multiriteria gamesproposed equilibrium onepts do not assist in evaluating players'behavior. Presented work is dediated to linking multiriteria gameswith dynami games. The new approah to onstrut the equilibriumin dynami game with many objetives is proposed.We onsider a biriteria dynami game with two partiipants indisrete time. Players exploit the ommon resoure and both wish to
∗This researh is supported by Russian Foundation for Basi Researh, projetsno. 16-01-00183_a and 16-41-100062_p_a.



166 Game-theoreti modelsoptimize two di�erent riteria. The state dynamis is in the form
xt+1 = f(xt, u1t, u2t) , x0 = x , (1)where xt ≥ 0 is the resoure size at step t, uit ∈ Ui indiates the strategyof player i, i = 1, 2.The payo� funtions of the players over in�nite time horizon arede�ned by

J1 =




J1
1 =

∞∑
t=0

δtg11(u1t, u2t)

J2
1 =

∞∑
t=0

δtg21(u1t, u2t)


 , J2 =




J1
2 =

∞∑
t=0

δtg12(u1t, u2t)

J2
2 =

∞∑
t=0

δtg22(u1t, u2t)


 ,(2)where gji (u1t, u2t) ≥ 0 gives the instantaneous utility, i, j = 1, 2, δ ∈

(0, 1) means the ommon disount fator.In the present work we design the equilibrium in multiritetiagame using the Nash bargaining solution. Therefore, we begin withonstrution of guaranteed payo�s whih play the role of the status quopoints.There are three possible onepts to determine the guaranteed payo�s
G1

1, G2
1, G1

2, G2
2.In the �rst one four guaranteed payo� points are obtained as thesolutions of zero-sum games. In partiular, the �rst guaranteed payo�point is a solution of zero-sum game where player 1 wishes to maximizeher �rst riterion and player 2 wants to minimize it. Other points areobtained by analogy.The seond approah an be applied when the players' objetives areomparable. Consequently, the guaranteed payo� points for player 1 areobtained as the solution of zero-sum game where she wants to maximizethe sum of her riteria and player 2 wishes to minimize it. And, byanalogy, for player 2.In the third approah the guaranteed payo� points are onstrutedas the Nash equilibrium with the �rst and the seond riteria of bothplayers, respetively.To onstrut multiriteria payo� funtions we adopt the Nashproduts. The role of the status quo points belongs to the guaranteedpayo�s of the players:

H1(u1t, u2t) = (J1
1 (u1t, u2t)−G1

1)(J
2
1 (u1t, u2t)−G2

1) , (3)
H2(u1t, u2t) = (J1

2 (u1t, u2t)−G1
2)(J

2
2 (u1t, u2t)−G2

2) . (4)



Game-theoreti models 167Next de�nition presents the suggested solution onept.De�nition. Strategy pro�le (u∗1t, u∗2t) is alled multiriteria Nash equilib-rium of the problem (1)�(2) if
H1(u

∗
1t, u

∗
2t) ≥ H1(u1t, u

∗
2t) ∀u1t ∈ U1 , (5)

H2(u
∗
1t, u

∗
2t) ≥ H2(u

∗
1t, u2t) ∀u2t ∈ U2 . (6)Just like in lassial Nash equilibrium approah it is not pro�table forboth players to deviate from equilibrium strategies. But under presentedequilibrium onept players maximize the produt of the di�erenesbetween optimal and guaranteed payo�s (3)�(4).A dynami multiriteria model related with the bioresouremanagement problem (�sh athing) is investigated to show howsuggested onept works. Referenes1. Patrone F., Pusillo L. and Tijs S.H. Multiriteria games andpotentials // Top. 2007. V. 15. P. 138�145.2. Pusillo L., Tijs S. E-equilibria for multiriteria games // Annals ofISDG. 2013. V. 12. P. 217�228.3. Rettieva A.N.A disrete-time bioresoure management problemwith asymmetri players // Automation and Remote Control.2014. V. 75(9). P. 1665�1676.4. Shapley L.S. Equilibrium points in games with vetor payo�s //Naval Researh Logisti Quarterly. 1959. V. 6. P. 57�61.5. Voorneveld M., Grahn S. and Dufwenberg M. Ideal equilibria innonooperative multiriteria games // Mathematial Methods ofOperations Researh. 2000. V. 52. P. 65�77.



Analysis of politialproesses and orruption
The phenomena of soft power and doublestandards in mathematial model ofross-ultural interationYu.I. BrodskyFederal Researh Centre Computer Siene and Control of the RussianAademy of Sienes, Mosow, RussiaThe artile presents the results of mathematial modeling of ross-ultural interation by the ompetition equations. Study of the model�nds the possibility of a paradox situation, when one of the ulturespositively treats the other, though this other one is atually quite harmfulto it. Conversely, in some ases, quite a harmless ulture an be treatedas very negative one.Double standards are haraterized by di�erent appliation of thepriniples, laws, rules, estimates to the same ations of various subjets,depending on the degree of loyalty of these subjets to the estimator orother reasons of bene�t for him. As for the soft power - this term was forthe �rst time introdued in 1990 by Joseph Nye of Harvard University[3℄, but something similar an be found also in works of Antonio Gramsiand even in the anient time - in Laozi's Tao Te Ching. It is possible tosay, that the ultural values apable to indue others to want what iswanted by you, are the ornerstone of the onept of soft power.In the work [1℄ an interation of two ultures was modelled by



Analysis of politial proesses and orruption 169A. Lotka and V. Volterra ompetition equations.
dN

dt
= αN

(
1− N

N∗ −m
M

M∗

)
,

dM

dt
= βM

(
1− M

M∗ − n
N

N∗

)
. (1)Here we treat a ulture on its household level - as a ertain methodof behavior, i.e. as a set of standard reations to standard requests of theenvironment. In our elementary model (1) we selet from this set onlytwo fators: an attitude to ompatriots and an attitude to strangers.In the same work [1℄ it was shown that the behavior of this systemof equations �rst of all depends on oe�ients of intolerane n and m.It would also be possible to all these oe�ients by double standardsfators � they show in how many times the ompetition in the ulturemore or less than its ompetition with the foreign one.We shall distinguish the following ranges of these double standardoe�ients:

• Supertolerane, if −∞ < n,m < 0.
• Tolerane, if 0 ≤ n,m < 1.
• Treatment without prejudies and preferenes, when n and mequals to one (no double standards).
• Intolerane, when 0 < n,m <∞.It oures [1℄, that if the double standard oe�ients are lesser thanone (tolerane), the ultures are friendly - they an exist together. If thedouble standard oe�ient of a ulture is greater than one (intolerane)- this ulture onstitutes a real danger to another - may fore it out fromthe system.Besides, the apability of soial systems to hange the behavior onshort times in response to urrent situation, turns the dynami system(1) into a position di�erential game [2℄, where the double standardoe�ients n and m beome the ontrols of players.That is why double standards are so popular in the interstaterelations. Nevertheless, in the work [1℄ it is shown that if the rivals areequally strong, unontrolled inrease in mutual intolerane (use of doublestandards), beomes equally dangerous to both players. In this ase thereare other interesting strategies of the game [2℄.Now let us look at a situation, for example, from the position ofulture N representative. First, the value N

N∗ is well-known to him,beause this value is a way of attitude to ompatriots in the ulture N- a way of good behavior whih is taught sine the hildhood. Seondly,the value m M
M∗ is also known - it is a ometition pressure of the ulture



170 Analysis of politial proesses and orruption
M , whih the representatives of the ulture N diretly observe, beausethey are under this pressure. Most likely, these values are not idential
N
N∗ 6= m M

M∗ - beause the ultures are really di�erent.Further, it is quite natural to assume that if N
N∗ > m M

M∗ , then itis pleasant to the representative of the ulture N - usually it is pleasantto anybody, when the pressure upon him weakens. Perhaps, he assessesthis situation approximately so: "Ah, what darlings, these well-manneredpeople ofM - not that my rough ompatriots!"On the ontrary, if N
N∗ <

m M
M∗ , then representative of N does not like this fat - very few peoplelike the pressure bigger than usual. Most likely he will think: "Well andhow savage are theseM ! It is quite impossible to live nearby them! Theyare not able to behave at all!"Atually, both as the �rst, either the seond estimate an be deeplywrong - in the system (1) nothing depends upon the ratio between thevalues N

N∗ and m M
M∗ , as well as from the ratio between M

M∗ and n N
N∗ .The behavior of the system (1) depends only upon the double standardfators n and m [1℄.For example, if N

N∗ >> m M
M∗ , but at the same time m > 1 -the situation an be dangerous for the ulture N , it an disappearompletely over a time, beause of the neighborhood with �lovely andwell-mannered� people, espeially if it puts n ≤ 1, having been underillusion of the �rst inequality.On the ontrary, if N

N∗ < m M
M∗ and even N

N∗ << m M
M∗ , but m < 1- there is no danger for the ulture N to disappear near the ulture M .Moreover, if n > 1 - the ulture N fores out the rival trough a time.However, if the system (1) beomes a di�erential game, thedouble standard fators n and m are not observed diretly. For therepresentative of the ultureN to de�nem, is neessary to ompare givenhim in feelings m M

M∗ with M
M∗ , but the last value, as a rule is unknownto him: studying of foreign ultures is a destiny of rather narrow irleof speialists.Thus,this elementary model learns us that it is inorret to measureone ulture by the gauge of another � suh a measurement is not valid.The only true yardstik for the ulture is this ulture itself, i.e. theompetitive pressure of a foreign ulture is to be ompared with its owninternal ompetition, but by no means with the internal ompetition ofthe native ulture.



Analysis of politial proesses and orruption 171At the author's subjetive view, this paradox illustrates why ourutting through a �window to Europe� during the last 300 years isnot too suessful. The Slavs one lived in Europe, but little fromthem remained. At the same time, under the Horde Yoke we survived,and under the Ottoman Empire the southern Slavs did, though veryunpleasant memoirs about these History periods remained in the folkloreof survivors. Referenes1. Brodsky Yu.I. Tolerane, Intolerane, Identity: simple math modelsof ultures' interation. Saarbruken: LAP LAMBERT AademiPublishing, 2011.2. Brodsky Yu.I. Cross-Cultural Interation as a PositionalDi�erential Game // Faing an Unequal World: Challengesfor Russian Soiology, Editor-in-Chief V. Mansurov, Mosow-Yokohama, 2014. P. 313-316.3. Nye J. S. Soft Power: The Means to Suess in World Politis.N.Y.: Publi A�airs, 2004.



Markets and autions:analysis and design
Nash-2 equilibrium: how farsighted behaviora�ets stable outomes∗M.S. SandomirskaiaNational Researh University Higher Shool of Eonomis, Mosow,Russian FederationIn a bounded rationality framework, modeling iterated strategithinking proess beomes more and more ompliated as the numberof partiipants inreases. Most papers have been devoted to analysis of2-person games with non-trivial agents expetations on the opponent'sreation and various depths of suh mutual preditions. The ommonapproah to n-person games with n > 2 is to introdue ognitivehierarhy of players (see survey [1℄). This requires ertain knowledge ofthe opponent's alulation abilities. However in many real-life situations,players might fae an unertainty how sophistiated their ompetitorsare. In partiular, the opponents' levels of rationality evolve in the ourseof the game [2℄. In this ase an aurate predition of response even atone step ahead seems to be unreasonable.The paper [5℄ introdues an equilibrium onept, so-alled Nash-2 equilibrium, in 2-player games with the following idea. A playersupposes that any pro�table response of the opponent might followson her deviation and rejets suh own improvement that may lead to

∗The study was prepared within the framework of a subsidy granted to the HSEby the Government of the Russian Federation for the implementation of the GlobalCompetitiveness Program.



Markets and autions: analysis and design 173poorer situation after some opponent's reation. [5℄ provides a ompleteharaterization of Nash-2 equilibrium, resolves existene problem,disusses the relation with equilibrium in threats and ounter-threats,equilibrium in seure strategies, sequentially stable set, equilibrium indouble best responses, and ontains onvining examples why suhequilibria an sometimes explain tait ollusion and more e�etiveoutomes than Nash equilibrium.In this work I extend the de�nition on Nash-2 equilibrium to n-person non-ooperative games. The underlying intuition is based onspatial eonomis notion of diret and indiret ompetitors [3℄. In a gamewith large number of players it is natural to assume that eah playerdivides her opponents into diret ompetitors whose reation she worriesabout and tries to predit, and indiret ompetitors whose strategy isbelieved to be �xed as in Nash equilibrium onept. Suh a seletivefarsightness looks more plausible than total ignorane of reations orperfet predition of future behavior of all other ompetitors.Consider an n-person non-ooperative game in the normal form G =
(i ∈ I = {1, . . . , n}; si ∈ Si; ui : S1 × . . . × Sn → R), where si, Siand ui are the strategy, the set of all available strategies and the payo�funtion, respetively, of player i, i = 1, . . . , n.Let us de�ne the re�etion network g by the following rule. Nodesare players i in I. A direted link gij = 1 from player i to j meansthat player i aounts pro�table responses of player j in her reasoning.
gij = 0, otherwise. Denote by Ni(g) the set of neighbours j of player iin the graph g, suh that gij = 1.De�nition 1. A deviation s′i of player i at pro�le s = (si, s−i) isseure if for any subset J ⊆ Ni(g) and any pro�table deviation s′jof every player j ∈ J at intermediate pro�le (s′i, s−i) even in ase ofsimultaneous deviations of all players from J player i is not worse o�,i.e. ui(s′i, s′J , s−iJ) ≥ ui(s).We maintain a non-ooperative framework and assume that if playeri has several out-neighbors they will not oordinate their ations. In thispaper the re�etion network is �xed exogenously before the game starts,it is not a result of strategi hoie.Note that if Ni(g) = ∅ then player i does not worry about any possiblereations, and so every her deviation is seure by de�nition. We will allthis situation fully myopi behavior.De�nition 2. A strategy pro�le is a Nash-2 equilibrium if no playerhas a pro�table and seure deviation.Every Nash equilibrium is also a Nash-2 equilibrium irrespetive



174 Markets and autions: analysis and designof the arhiteture of the re�etion network. Moreover, in the ase ofempty re�etion network they are oinide by de�nition. In general, non-trivial re�etion network signi�antly in�uenes equilibrium outomes.A striking example is prisoner's dilemma.Consider the model of n-player prisoner's dilemma from [4℄. Eahplayer has two possible strategies: to ooperate with the ommunity orto defet. The utility funtion is
ui =

{
bA/n− c, if player i ooperates,
bA/n, if player i defets,where A is a number of ooperators in the game, eah of them bringspro�t b to the soiety, but pays the ost c. The total pro�t is equallydivided to all n players irrespetive of their real ontribution. Unilateraldefetion is preferred for eah individual c > b

n ; overall ooperation ismore preferred for eah player than ommon defetion b > c > 0.Though under Nash rationality, ooperation is unlikely to emerge,even in evolutionary game setting, onsidering a non-empty re�etionnetwork yields ooperation. The number of ooperators depends bothon the arhiteture of network and the relation between b and c. Assumethat A players ooperate and any ooperator i re�ets about ni otherooperators. Suh a situation is a Nash-2 equilibrium if and only if
ni > n∗ =

cn

b
− 1, A >

cn

b
.This means that a player re�eting about relatively small numberof agents never ooperates. Therefore, in Nash-2 equilibrium any subsetof players with su�ient number of "links"with the other ooperatorsare able to maintain ooperation while all other defet if the numberof ooperators is enough to provide positive pro�ts for ooperators.When these pro�ts are very small the ooperation requires the ompletere�etion network among ooperators. Hene, for supporting ooperativebehavior it is important not only to provide a balane between the valueof individual return and the ooperation ost, but also to ensure loseontats between ooperators.Further examples will inlude analysis of oligopoly with di�erentstrutures of re�etion networks. The onnetion with spatial models willbe highlighted. Common patterns of re�etion networks will be identi�ed.Referenes1. Crawford V., Costa-Gomes M., Iriberri N. Strutural Modelsof Nonequilibrium Strategi Thinking: Theory, Evidene, and



Markets and autions: analysis and design 175Appliations // Journal of Eonomi Literature. 2013. Vol. 51, No.1. P. 5-62.2. Frey S., Goldstone R. Floking in the depths of strategi iteratedreasoning // arXiv preprint arXiv:1506.05410. 2015.3. Gabszewiz J.J., Thisse J.-F. Spatial ompetition and the loationof �rms. In: Loation Theory (Fundamentals of Pure and AppliedEonomis, 5). 1986. P. 1-71.4. Rezaei G., Kirley M., Pfau J. Evolving ooperation in the n-player prisoner's dilemma: A soial network model // Arti�ialLife: Borrowing from Biology. Springer Berlin Heidelberg, 2009. P.43-52.5. Sandomirskaia M. Rational deision making under unertaintyof reation: Nash-2 equilibrium onept // Working paperWP7/2016/01. Series WP7 "Mathematial methods for deisionmaking in eonomis, business and politis". 2016. P.1-40.Optimization of energeti markets' transportinfrastruture∗A. Vasin, M. Dolmatova, and P. KartunovaLomonosov Mosow State University, Mosow, RussiaMarkets of natural gas, oil and eletriity play an important rolein eonomies of many ountries. Every suh market inludes its owntransmission system. Consumers and produers are loated at di�erentnodes, and transmission apaities of the lines between the loal marketsare limited. The share of transport osts in the �nal prie of the resoureis typially substanial, the problem of transmission system optimizationis of pratial interest. Paper [1℄ determines the optimal transmissionapaity for a two-node market. The present study onsiders a generalproblem of soial welfare optimization with aount of prodution osts,onsumers' utilities and osts of trasmission apasities' inrements. Theomplexity of the problem onerns with substanial �xed osts relatedto expansions of transmitting lines. If the set of expanded lines weregiven the problem would be onvex and ould be solved by standardmethods. However, under a big number of lines the e�ient searh ofthe set requires speial tools. In general the problem of transport systemoptimization is NP-hard ( see [2℄). Below we determine onditions for
∗The researh was supported by Russian Foundation for Basi Researh (projetNo. 16-01-00353/16).



176 Markets and autions: analysis and designsubmodularity and for supermodularity of the soial welfare funtion onthe set of transmitting lines. These properties provide a possibility toapply the known e�ient optimization methods (see[3℄,[4℄).We onsider a homogeneous good market onsisting of several loalmarkets and a network transmission system. Let N denote the set ofnodes and L ⊆ N×N be the set of edges. Every node i ∈ N orrespondsto a loal perfetly ompetitive market. Demand funtion Di (p) andsupply funtion Si (p) haraterize respetively onsumers and produersin the market and meet standard onditions. The demand funtionrelates to the onsumption utility funtion: Ui (q) =
∫ q

0 D
−1
i (v) dv.The supply funtion Si (p) determines the optimal prodution volumeat the node i : Si (p) = Arg maxv(pv − ci(v)) , where ci(v) is theminimal prodution ost of volume v at node i. The total pro�t ofproduers at node i under prie p is Pri (p) =

∫ p

0 Si(p)dp. For any
(i, j) ∈ L, the line is haraterized by initial transmission apaity Q0

ij ,unit transmission ost eijt , ost funtion of the transmission apaityinrement, inluding �xed osts eijf and variable osts eijv (Qij , Q
0
ij), eijvis a monotonous onvex funtion of inrement (Qij − Q0

ij). The ost ofthe line expansion is the overnight onstrution ost amortized over thelife-time Tij of the line using disount rate r: eij = r
OCij

1−erTij
(see [5℄ forthe detailed disussion). Let qij denote the �ow from the market i tomarket j, qij = −qji. Denote Z (i) the set of nodes onneted with node

i. Under any �xed �ows of the good −→q = (qij , (i, j) ∈ L) and produtionvolumes −→v = (vi, i ∈ N), the total soial welfare for the network marketis
W (−→q ,−→v ) =

∑

i∈N

[Ui


vi +

∑

l∈Z(i)

qli


− ci (vi)]−

∑

(i,j)∈L, i<j

Eij (qij).where
Eij (qij) =

{
eijf + eijv

(
|qij | −Q0

ij

)
+ eijt |qij | , if |qij | > Q0

ij ,

eijt |qij | , if |qij | ≤ Q0
ij .The welfare optimization problem under onsideration is

max−→q ,−→v
W (−→q ,−→v ) . (1)Let △Si (pi) = Si (pi)−Di (pi) denote the supply-demand balane.



Markets and autions: analysis and design 177Proposition 1 Under any �xed �ows (qij , (i, j) ∈ L), for every i ∈ N ,the optimal prodution volume at node i is vi = Si(p̃i), where p̃i meetsequation △Si (p̃i) =
∑

j∈Z(i) qijFor any L ⊆ L, onsider a problem (2) with �xed set L of expanded lines.That is, |qij | ≤ Q0
ij for (i, j) ∈ L \ L, and the �xed osts are alwaysinluded in Eij for (i, j) ∈ L.Proposition 2 The latter problem is onvex, and its solution

(−→q ,−→v )(L) meets FOCs whih determine the ompetitive equilibrium ofthe orresponding network market.Let W̃ (L) denote the maximal welfare in the latter problem. Thenproblem (1) redues to maxL⊆L W̃ (L). Below we also onsider problem(1) without onstrution osts and under onstraint: |qij | ≤ Qij , (i, j) ∈
L. Let p̃i(−→Q), i ∈ N , denote the equilibrium pries orresponding to thesolution of this problem.De�nition 1 The model under onsideration meets the �ow strutureinvariene ondition if, for any −→

Q >
−→
Q0, (i, j) ∈ L, sign(pi(

−→
Q) −

pj(
−→
Q)) = sign(pi(

−→
Q0)− pj(

−→
Q0)).A funtion w(L), L ⊆ L, is submodular (resp. supermodular) on L, iffor any L1, L2 ⊆ L w(L1) + w(L2) > (6) w(L1 + L2) + w(L1 ∩ L2).The desirable properties of the welfare funtion losely relate to the�ow struture invariane ondition. In general the funtion is neithersubmodular nor supermodular even for hain-type graphs, where L =

{(i, i + 1), i = 1, ..., n − 1}. Consider a market with 3 nodes where
p1(

−→
Q0) > p2(

−→
Q0) > p3(

−→
Q0). Then the funtion is supermodular aordingto Theorem 1 given below. If �ow diretions onverge, then the funtionis submodular by Theorem 2. In general a hain-type market may inludeboth strutures as its omponents and meet none of the onditions ofsuper- or submodularity. Moreover, �ow diretions may hange as theapaities inrease. Below we establish onditions for the �ow strutureinvariane and examine the welfare funtion for hain-type and star-typemarkets.Theorem 2 For a hain-type market with n nodes, let the initial pries

pi(
−→
Q0), i = 1, .., n, monotonously derease in i. Then, for any −→

Q ≥ −→
Q0,

pi(
−→
Q) ≥ pi+1(

−→
Q), i = 1, .., n − 1, and funtion W̃ (L) is supermodular.The omplexity of searh for the optimal set L∗ under −→

Q0 = 0 does notexeed (n−1)n
2 .



178 Markets and autions: analysis and designConsider a star-type market where N = {0, 1, .., n}, L = {(0, i), i =

1, .., n}, pi(
−→
Q0) < p0(

−→
Q0) for i ∈ I1 = {2, ..,m}, pi(

−→
Q0) > p0(

−→
Q0) for

i ∈ I2 = {m+ 1, .., n}. For M ⊆ L, let (−→Q0||−→Q∞
M ) denote vetor −→Q suhthat Ql = Q0

l for l /∈M , Ql = ∞ for l ∈M .Theorem 3 The market meets the ondition of the �ow strutureinvariene if and only if ∀i ∈ I1 pi(
−→
Q0||−→Q∞

I1
) < p0(

−→
Q0||−→Q∞

I1
) and

∀i ∈ I2 pi(
−→
Q0||−→Q∞

I2
) > p0(

−→
Q0||−→Q∞

I2
). Under this ondition, the soialwelfare funtion W̃ (L1 ∪ L2) is submodular in L1 ⊆ I1 under a �xedset L2 ⊆ I2, and is also submodular in L2 ⊆ I2 under a �xed set

L1 ⊆ I1. Besides that, for any L1, l ∈ I1 \ L1, the welfare funtioninrement W̃ (l ∪L1, L2)− W̃ (L1, L2) monotonously inreases in the set
L2, and for any L2, l ∈ I2 \L2, the inrement W̃ (L1, l∪L2)−W̃ (L1, L2)monotonously inreases in the set L1.These properties of tree-type markets allow to use the known algorithms[3℄ for submodular and supermodular funtions maximization in orderto solve the optimization problem.Referenes1. A. A. Vasin and E. A. Daylova, Optimum Throughput of a Systemof Produt Logistis between Two Markets, Mosow UniversityComputational Mathematis and Cybernetis, 2014, Vol. 38, No.3, pp. 136-141., 2014.2. Guisewite G.M., Pardalos P.M., Minimum onave-ost network�ow problems: Appliations, omplexity, and algorithms. Annalsof Operations Researh, 25 (1); 1990. p. 75-99.3. Khahaturov V.R. Mathematial Methods of RegionalProgramming. Nauka, Mosow; 1989 (in Russian).4. Daylova E.A., Vasin A.A. Determination of Transmission Capaityfor a Two-node Market. Proedia Computer Siene. 31; 2014. p.151�157.5. Stoft S. Power System Eonomis: Designing Markets forEletriity. New York. Wiley; 2002.



Markets and autions: analysis and design 179Optimal regulation norms for ompetitivemarkets∗A. Vasin, E. Sivova, and A. TyulenevaLomonosov Mosow State Univerity, Mosow, RussiaThis paper onsiders a ompetitive market of a homogeneous goodwith prodution negative externalities. We provide a theoretial modelfor determination of optimal regulation norms. Our study followsthe approah that determines regulation norms proeeding from thesoial welfare maximization problem (see [1℄, [2℄, [3℄, [4℄). We �nd outonditions for existene of a uniform optimal norm for all produers andprovide an expliit formula for alulation of some sanitary norms.Let A = {1, ..., n} be a set of �rms produing a homogeneous good.Its prodution onerns with some negative external e�et. Besidesprodution volume qa the negative impat depends on tehnologialparameter ra established by the produer. Below we all it the internalstandard. Thus, formally a strategy of produer a is a pair (qa, ra). Belowwe onsider also an external norm related to the parameter. Produtionosts of produer a orrespond to the following expression:
Ca(qa, ra) = ca(qa) + c1a(qa, ra) + c2a(qa, ra), (1)where ca(qa) is the minimal ost of the volume qa prodution, c1a(qa, ra)- the additional ost related to the normative standard, c2a(qa, ra) -the average ost of the negative e�et's ompensation under the givenproduer's strategy.Consumers behavior is haraterized by ontinuous demand funtion

D(p) with standard properties: D(p) dereases and is di�erentiablealmost everywhere, it is equal to zero when the prie exeeds some level.The demand does not depend on standards set by produers beauseonsumers do not have reliable information about them and, moreover,annot estimate the impat of this fator on their utilities.Let r denote an external norm established by some regulatinggovernment body. The norm is typially set for all produers of thegood and does not depend on partiular a ∈ A. We assume that it limitspermitted internal standards from above and thus determines the set ofpossible strategies for eah produer: pair (qa, ra) is feasible if ra 6 r.Consider a model where the market is perfetly ompetitive and eahproduer aims to maximize his pro�t under given norm and prie:
∗This researh is supported by the Russian Fund for Basi Researh, projet N 16-01-00353/16.
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(qa∗, ra∗)(p, r) → max

(qa,ra):ra6r
(pqa − Ca(qa, ra)). (2)The supply funtion of produer a is determined as

Sa(p, r) = Argmax
qa

(pqa − min
ra6r

Ca(qa, ra)). (3)The total supply funtion is S(p, r) =
∑

a S
a(p, r), and theompetitive equilibrium prie p̃(r) proeeds from the ondition D(p) ∈

S(p, r).Proposition 1 Assume that, for eah produer a, his ost funtionmay be represented as Ca(qa, ra) = ca(qa) + qac
a
(ra), where ca(q) isa onvex and inreasing funtion, ca(r) is a onvex funtion that reahesits minimal value at r̂a. Then the equilibrium prie p̃(r) does not inreasein r.Thus, the tougher the norm the grater is the prie. Below we disussthe following issues: what is the optimal state of the eonomy withaount of the negative externality? How to reah this optimal stateby means of the regulation?Consider the optimal strategy of produer a at theequilibrium under a given norm: r: qa∗(r) ∈ Sa(p̃(r), r),

ra∗(r) = argminra6r C
a(qa∗(r), ra). The soial welfare with aount ofthe negative externality is determined as

W (r) =

=

D(p̃(r))∫

0

D−1(q)dq −
∑

a

Ca(qa∗(r), ra∗(r))−
∑

a

Ca
lost(q

a∗(r), ra∗(r)),

∫D(p̃(r))

0
D−1(q)dq is the total onsumers' utility without the impatof the negative externality, ∑a C

a(qa∗(r), ra∗(r)) shows the total ostsof produers, and Ca
lost is the loss of the soial welfare related to thenegative externality that is not ompensated by the produer.Consider a problem of the soial welfare optimization for thiseonomy under a entralized planning. Let Ca

W = Ca + Ca
lost. Thenthe problem may be set as follows:

∑
a qa∫

0

D−1(q)dq −
∑

a

Ca
W (qa, ra) → max

qa,ra,a∈A
. (4)



Markets and autions: analysis and design 181Proposition 2 Assume that funtion C
a

W (qa)
def
= minra C

a
W (qa, ra) isonvex. Then a ombination of solutions (qa∗, ra∗) for problem (2) underonstraint ra 6 r̂a, a ∈ A, is a solution of problem (4).If the optimal values ra in the solution of the problem (4) are allequal to r̂, then we all r̂ a uniform optimal norm.Consider a partiular ase where the norm bounds onentration ofsome harmful substane in the purhased good. For eah produer A, let

ca(qa) denote the ost of prodution of the given volume without anypuri�ation. The initial onentration of the substane is ra0 , and funtion
camarg(r) determines the marginal ost of puri�ation depending on theonentration. Then the ost of puri�ation under standard normative
ra is c1a(qa, ra) = qa

∫ ra0
ra
camarg(r)dr, where funtion camarg dereases in

r. This property holds beause redution of the onentration in a givenamount is the heaper the higher is the initial onentration.Under a soft internal standard a produer faes the risk of additionalosts related to ompensations of losses for onsumers whih su�eredfrom high onentration of the substane. Let w(ra) denote the moneyequivalent of the average onsumer loss per one unit of the good. Thisfuntion monotonously inreases in ra, as well as the share πa(ra) ofthe loss that the produer ompensates to onsumers. Thus, the totalprodution osts meet Ca(qa, ra) = ca(qa) + c1a(qa, ra) + c2a(qa, ra)where c2a(qa, ra) = qaπa(ra)w(ra).Aording to equation (2), the internal standard of produer a meetsondition
ra

∗
= argmin

ra

(∫ ra0

ra
camarg(r)dr + πa(ra)w(ra)

)
.In the perfetly ompetitive market the optimal strategy under agiven norm r is a solution of the problem

(qa
∗
, ra

∗
)(p, r) →

→ max
(qa,ra):
ra6r


pqa − ca(qa)− qa

ra0∫

ra

camarg(r)dr − qaπ(ra)w(ra)


 .The total of prodution osts and onsumers' losses in this ase is

Ca
W (qa, ra) = ca(qa) + qa

ra0∫

ra

camarg(r)dr + qaw(ra), (5)



182 Markets and autions: analysis and designand the unovered onsumers' losses related to the harmful substaneare Ca
lost(q

a, ra) = qa(1 − π(ra))w(ra). Denote ∑a q
a = qΣ. Then thesoial welfare maximization problem is

qΣ∫

0

D−1(q)dq −
∑

a


ca(qa) + qa

ra0∫

ra

camarg(r)dr + qaw(ra)


→ max

qa, ra, a∈A
.Proposition 3 Assume that the puri�ation tehnology haraterized bythe marginal ost funtion cmarg(r) is the same for all produers. Thenthe optimal sanitary norm r∗ binding the maximal onentration of theharmful substane meets equation cmarg(r

∗) = w′(r∗), and the optimalprodution volumes proeed from the system
D−1(qΣ) = ca

′
(qa) +

∫ ra0
r∗ c

a
marg(r)dr + w(r∗), a ∈ A.Referenes1. Atkinson A.B. and Stiglitz J.E. Letures on Publi Eonomis //MGraw-Hill, 1980.2. La�ont J.J. and Tirole J. A Theory of Inentives in Prourementand Regulation // MIT Press, 1993.3. Spulber D.F. E�uent regulation and long-run optimality //Journal of Environmental Eonomis and Management, Vol. 12,(1985) pp. 103-116.4. Polterovih V. Elements of the Reform Theory // Mosow,Ekonomika, (2007)



Preditive models forongested tra�
4-step foreasting transport modelwith trip haining behaviour∗A.S. Aliev, D.S. Mazurin, A.A. Fedotov, and V.I. ShvetsovInstitute for Systems Analysis, Federal Researh Center ¾ComputerSiene and Control¿ of Russian Aademy of Sienes, Mosow, RussiaWe onsider the problem of modeling and foreast of tra� andpassenger �ows in a large ity. The standard approah to solving thisproblem is a 4-step sheme [1, 2℄, whih inludes (1) trip generation, (2)trip distribution, (3) modal split, and (4) tra� assignment. The mainadvantage of this approah is the simpliity of data preparation andsoftware implementation and relatively low onsumption of omputerresoures, whih allows for large sale network modeling. However, thestandard 4-step sheme does not aount for some important aspets oftravel behaviour, one of whih is the interrelationship between trips, thatform hains of trips. We presents a ombined approah, whih allows totake into aount a major impat of trip hains while maintaining theomputational simpliity of the 4-step sheme.The movements of people form a hains that start and end at thesame plae, usually at home. Various mobility surveys show that themost ommon trip hains are hains with single destination Home →Objet → Home and hains of three trips Home → Objet 1 → Objet 2

→ Home. One more fairly ommon hain Home → Objet 1 → Objet 2
∗This researh is supported by the Russian Foundation for Basi Researh, Grant�13-01-12030.



184 Preditive models for ongested tra�
→ Objet 1 → Home is splitting on two simple hains: Home → Objet 1
→ Home and Objet 1 → Objet 2 → Objet 1. Other trip hains in thedemand struture an be negleted.The set of trip hains with ertain purposes in ertain periods ofday (early morning, morning peak, midday o�-peak, evening peak, lateevening, night) will be referred to as demand element (for instane, HomeMorning peak−−−−−−−−−→ Work Evening peak−−−−−−−−→ Home). We evaluate distribution of triphains over demand elements based on various mobility researhes.The alulation of trip matries inludes alulation of daily matriesfor eah demand stratum, followed by alulation of hourly mode-spei�matries (by foot, by ar and by publi transport) for eah time period[3℄. We assume that people usually do not hange mode during the hainof trips. Thus will apply the same splitting oe�ients to all trips ina single hain. These oe�ients are evaluated separately for demandelements.Modal split oe�ients depend on the generalized travel osts fordi�erent modes. Travel osts are omposed of the following omponents:

• for private transport:� starting time (assigned to onnetors from zones),� travel time (road links and turns),� operating osts (road links),� toll roads fee (road links),� parking fee in ertain areas (onnetors to zone).
• for publi transport:� waiting and boarding time (boarding links),� travel time (aording to a time tables),� the fare payment (a �xed payment or a distane-dependentpayment).For evaluation of the modal split we divide the population into twolasses based on ar ownership (aess to a ar). Thus ar owners havea hoie of three modes, while the others have only two alternatives(exluding ar). The proportion of populations of these lasses variesover the territory of modelling.We also use a similar modeling framework for freight transport, whihinlude the following steps (for eah lass of traks):



Preditive models for ongested tra� 1851. Estimation of the total daily trips produed and attrated by azone for eah demand stratum.2. Calulation of daily matries for eah demand stratum.3. Calulation of hourly matries, taking into aount the restritionsof entry and moving of truks of ertain lasses in ertain areas ofthe ity, applied at ertain time periods.To implement this freight transport modeling framework thefollowing inputs are required:
• freight demand struture desription:� freight trips generators and attrators lassi�ation (parkingstations, warehouses, fatories, malls, shops, et.),� freight trip hains desription (inluding intermediate tripsmultipliity),� trip hains distribution by truk type (light, medium andheavy truks),� trip distribution by time of day for eah trip hain,
• generators/attrators spatial distribution with their attributes.The proposed modeling framework was implemented for the tra�model of the Mosow agglomeration. Model alibration was based ona hierarhial data struture [4℄, whih implies step-by-step alibration,starting with daily itywide indiators and then moving towards detailson the time of day, ity zones, et. A databank for alibration of theMosow tra� model inludes:
• tra� ounts on roads;
• passenger ounts at subway and suburban railway stations;
• passenger ounts at bus stops near subway stations;
• average travel times of typial routes at di�erent time periods of aday. Referenes1. Shvetsov V.I. Mathematial modeling of tra� �ows //Automation and Remote Control. 2003. No 11. P. 3�46.



186 Preditive models for ongested tra�2. Ortuzar J. de D. and Willumsen L.G. Modelling Transport. Wiley,2011.3. Aliev A.S., Mazurin D.S., Maksimova D.A., and Shvetsov V.I. Thestruture of the omplex model of the transport system of Mosow// Proeedings of the ISA RAS. 2015. V. 65, No 1. P. 3�15. (inrussian)4. Mazurin D.S. and Shvetsov V.I. Data struture for ity tra�model alibration // Proeedings of the ISA RAS. 2015. V. 65,No 1. P. 16�23. (in russian)The tra� �ow simulation in a growingurban infrastruture with using a tool set forreating interative virtual environmentsV.V. Gribova, N.B. Shamray, and L.A. FedorishevInstitute of Automation and Control Proesses FEB RAS, Vladivostok,Russian FederationMathematial equilibrium models and the speialized software basedon them are one of the e�etive tools to support managerial deisionsin the transportation planing. Suh models onsider the tra� �ow as aentire unit and make it possible to predit the tra� volume and tra�assignment in the network with �ow-dependent travel osts.Preditive modelling of tra� �ows onsists of solving the followingproblems [1℄: 1) trip generation; 2)trip distribution; 3) model split; 4)route assignment. The problems are onsidered in suession, the outputfrom one problem is being the input to the next one. In order to ahievean agreement between the results of problem solutions the proess haveto be repeated many times.The foreast ongestion of the transportation network is determinedat the fourth step. The basi assumption onerning the way the networkusers hoose their routes is usually made aording to the so-alledWardrop's �rst behavioural priniple: drivers use only routes orrespon-ding to minimal travel osts [2℄.Despite the many advantages the urrent software of tra� preditionhas two drawbaks 1) it does not ontain implementations of reentadvanes of the mathematial modelling of tra� �ows; 2) it requirespreliminary training to be installed, supported and used.In this paper the onept of the loud servie for interative modellingof transport �ows in a growing ity infrastruture will be desribed.The main purpose of the servie is operative evaluation of the network



Preditive models for ongested tra� 187ongestion as a result of various modi�ations of network elements andhanges in the arrangement and designation of town planning objets.The foreast of tra� �ows is realized on the bases of the mathe-matial model whih is the result of synthesis of the gravity model ofdesription of trip distributions [3℄ and multimodal network equilibriumproblem with elasti demand [4℄. Equilibrium tra� �ow pattern isde�ned as the solution of the following variational inequality
F (x∗)(x− x∗)− 1

λ

∑

m ∈ M
(i, j) ∈ O × D

ln




oidjρ
∗
mij

(
∑

m∈M
ρ∗mij)

2


 (ρmij − ρ∗mij) ≥ 0,

(x, ρ) ∈ Ω =



(x, ρ) ≥ 0 :

∑

p∈Pij

xmp = ρmij , m ∈ M, (i, j) ∈ O ×D,

∑

j∈D

∑

m∈M
ρmij = oi,

∑

i∈O

∑

m∈M
ρmij = dj , (i, j) ∈ O ×D



 ,where M, O and D are the sets of modes, origins and destinations, Pijis the set of alternative routes for OD-pair (i, j) ∈ O × D, x = (xmp :

m ∈ M, p ∈ Pij , (i, j) ∈ O × D) and F (x) = (Fmp(x) : m ∈ M, p ∈
Pij , (i, j) ∈ O×D) are the route �ow vetor and the travel ost mapping,
ρ = (ρmij : m ∈ M, (i, j) ∈ O × D) is the orrespondene matrix, oiand dj are the total number of trips generated by the origin i ∈ O andabsorbed by the destination j ∈ D, λ > 0 is the alibration oe�ient.The solution of the variational inequality substitutes the last threestages of the four-phases iterative proess of tra� modelling, whih, inturn, improves alibration of the alulations and leads to more reliableresults of tra� modelling. The assumption that the travel ost Fmp(x)is the funtion of the load aross the entire network allows us to apturesupplementary �ow relationships suh as interations among vehiles ondi�erent road links and turning priorities in juntions and et.A tool set for 3D visualization and tra� �ows modeling is imple-mented. The tool set is a loud servie, whih onsists of three modules:a simulation module, a ontrol module, and a visualization module.The simulation module is realized on a high-performane server plat-form, ontrol and visualization modules are realized on the IACPaaSloud platform [5℄. Communiation between the platforms based on asyn-hronous dynami http-queries.



188 Preditive models for ongested tra�The simulation module results are transmitted to the ontrol module,whose main tasks are: proessing, analysis and transmission of informa-tion between the modules in spei� for eah module formats. Analysis ofthe data in the ontrol module is arried out using a virtual environmentmodel [6℄. The virtual environment model has a delarative represen-tation. Proessing and analysis results are transmitted to the visualiza-tion module in the same delarative format. The main omponent of thevisualization module is interpreter. It provides 3D visualization and aprogram logi using the virtual environment model.Referenes1. Patriksson M. The tra� assignment problem: models andmethods. Utreht, The Netherlands: VSP. 1994.2. Wardrop J. Some theoretial aspets of road tra� researh //Proeedings of the institute of Engineers. Part II. 1952. V. 1.P. 325�378.3. Erlander S., Stewart N.T. The gravity model in transportationanalisis: theory and extensions. Utreht, The Netherlands: VSP.1990.4. Dafermos S. The general multimodal network equilibrium problemwith elasti demand // Networks. 1982. V. 12, No 1. P. 57�72.5. Gribova V.V, Kleshev A.S., Krylov D.A., Moskalenko F.M., Sma-gin S.V., Timhenko V.A., Tyutyunnik M.B., Shalfeeva E.A. Re-searh projet IACPaaS. Extensible information and software om-plex for development, ontrol, and usage of intelligent softwarebased on loud omputing // Iskusstvennyi intellekt i prinyatiereshenii. 2011. No. 1. pp. 27�35 (in Russian).6. Gribova V.V., Fedorishev L.A. Virtual teahware and tools for itsreation // Vestnik informaionnyh i komp'yuternyh tehnologii.2012. No. 3. pp. 48�51 (in Russian).Intermediate universal gradient method withinexat orale∗D. KamzolovMosow Institute of Physis and Tehnology, Mosow, RussiaWe onsider the following onvex omposite optimization problem[1℄:
F (x) = f (x) + h (x) → min

x∈Q
.

∗This researh is supported by grant RFBR 15-31-20571 mol-a-ved.



Preditive models for ongested tra� 189De�nition 1. [1℄ Let funtion f be onvex on onvex set Q. We saythat it is equipped with a �rst-order (δ, L)-orale if for any y ∈ Q wean ompute a pair (fδ,L (y) , gδ,L (y)), suh that for all x ∈ Q

0 ≤ f (x)− (fδ,L (y) + 〈gδ,L (y) , x− y〉) ≤ L

2
‖x− y‖2 + δ.Constant δ will be alled auray of the orale. A funtion h(x) havesimple struture and it's easy to ompute it without an orale.Statement 1. [1℄ Composite fast gradient method(FGM)Yu.E.Nesterov with (δ, L)-orale onverges with

F
(
yN
)
− F∗ ≤ ε, N = O

(√
LR2

ε

)
, δ ≤ O

( ε
N

)
.where (N � a number of alling orale). Up to onstant estimations areoptimalStatement 2. [1℄We introdue oneparametri lass with parameter

p ∈ [0, 1]) of intermediate gradient methods with suh onvergene rate
F
(
yN
)
− F∗ ≤ ε, N = O

((
LR2

ε

) 1
p+1

)
, δ ≤ O

( ε

Np

)
. (1)Statement 3. [1℄ Let

‖∇f (y)−∇f (x)‖∗ ≤ Lν ‖y − x‖ν (2)with some ν ∈ [0, 1]. Then
0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖2 + δ,ãäå L = Lν ·

[
Lν

2δ
1−ν
1+ν

] 1−ν
1+ν

.Statement 4. From (1) For the intermediate gradient method wederive suh onvergene rate [2℄
F
(
yN
)
− F∗ ≤ ε, N = O

(
inf

ν∈[0,1]

(
LνR

1+ν

ε

) 2
1+2pν+ν

)
,where δ ≤ O

(
ε

Np

)
, p ∈ [0, 1].
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0 ≤ f(y)− f(x)− 〈∇f(y)−∇f(x)〉 ≤ L

2
‖y − x‖2 + δwe have estimation

N = O

((
LR2

ε

) 1
p+1

)
, δ ≤ O

( ε

Np

)
.Let use the notion of (δ, L)-orale for solving the problems with exat�rst-order information but with a lower level of smoothness.

L = Lν

[
Lν

2δ

1− ν

1 + ν

] 1−ν
1+ν

.It means that our estimation hanges suh way:
N = O

((
LR2

ε

) 1
p+1

)
= O



(
R2

ε
Lν

[
Lν

2δ

1− ν

1 + ν

] 1−ν
1+ν

) 1
p+1


 =

= O

((
R2ε−1L

2
1+ν
ν δ

ν−1
1+ν

) 1
p+1

)
⇒

Np+1 ∼ R2ε−1L
2

1+ν
ν δ

ν−1
1+ν ∼ R2ε−1L

2
1+ν
ν

( ε

Np

) ν−1
1+ν ∼

∼ R2ε
−2
1+νL

2
1+ν
ν N− pν−p

1+ν ⇒

Np+1+ pν−p
1+ν ∼ L

2
1+ν
ν R2ε

−2
1+ν ⇒

N
pν+p+ν+1+pν−p

1+ν ∼
(
LνR

1+ν

ε

) 2
1+ν

⇒

N1+2pν+ν ∼
(
LνR

1+ν

ε

)2

⇒

N ∼
(
LνR

1+ν

ε

) 2
1+2pν+ν

⇒
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F (yN )− F∗ ≤ ε,N = O

((
LνR

1+ν

ε

) 2
1+2pν+ν

)
, δ ≤ O

( ε

Np

)
.�This method has a very good appliation in transport problems. Weould use it to solving dual optimization problem in searhing equilibriain mixed models of �ow distribution in large transport networks.Referenes1. Devolder O., Glineur F., Nesterov Yu.E. "First-order methods ofsmooth onvex optimization with inexat orale."Springer, 20132. Gasnikov A., and Kamzolov D., Mendel M. "Universal ompositeprox-method for stritly onvex optimization problems"2016.http://arxiv.org/abs/1603.077013. Anikin A.S., Gasnikov A.V., Semenov V.V. "Parallelizabilitydual method for searhing equilibria in mixed models of �owdistribution in large transport networks."ORM 2016Empirial synhronized �ow in oversaturatedity tra�B.S. Kerner1, P. Hemmerle2, M. Koller2, G. Hermanns1, S.L. Klenov3,H. Rehborn2, and M. Shrekenberg1

1Physik von Transport und Verkehr, Universit�at Duisburg-Essen, 47048Duisburg, Germany,
2Daimler AG, RD/RTF, HPC: 059-X832, 71063 Sindel�ngen,Germany,

3Mosow Institute of Physis and Tehnology, Department of Physis,141700 Dolgoprudny, Mosow Region, RussiaBased on a study of anonymized GPS probe vehile traes measuredby personal navigation devies (PND) in vehiles randomly distributed inity tra�, empirial synhronized �ow in oversaturated ity tra� hasbeen revealed. It turns out that real oversaturated ity tra� resultingfrom speed breakdown in a ity in most ases an be onsidered randomspatiotemporal alternations between regular sequenes of moving queuesand synhronized �ow patterns (SP) in whih the moving queues do notour. This work relies on the results in [1℄.Conlusions: In real oversaturated ity tra� aused by speedbreakdown, the following empirial mirosopi spatiotemporal tra�
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Fragment of typial empirial mirosopi spatiotemporal struture ofoversaturated ity tra�: (a) Vehile trajetories of probe vehiles onroad setion measured on February 05, 2013. (b) Mirosopi(single-vehile) speeds (blak squares) along vehile trajetories shownby the same numbers in (a). Dashed-dotted lines show tra� signalloation in (a) and time instanes of vehile passing the signal in (b).
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Explanations of oversaturated tra� in lassial theory (a, b) [3℄ andthree-phase theory (�f) [4℄: (b, ) Simulations of speed in movingqueues (b) and SPs (). J � line J , qsat is a saturation �ow rate, F �free �ow, S � synhronized �ow.



194 Preditive models for ongested tra�patterns have been revealed: (i) Empirial synhronized �ow patterns(SP). (ii) Classial regular sequenes of moving queues. (iii) Randomspatiotemporal alternations between regular sequenes of moving queuesand SPs. (iv) Simultaneous ourrene of SPs and moving queues indi�erent road lanes. Empirial probability of speed breakdown in itytra� is well-desribed by a theoretial one found in [2℄.Referenes1. B. S. Kerner, P. Hemmerle, M. Koller, G. Hermanns, S. L. Klenov,H. Rehborn, M. Shrekenberg, Phys. Rev. E 90 032810 (2014).2. B.S. Kerner, Phys. Rev. E 84, 045102(R) (2011); B.S. Kerner,Europhys. Lett. 102, 28010 (2013); B.S. Kerner, Physia A 39776�110 (2014).3. F.V. Webster, Road Researh Tehnial Paper No. 39, RoadResearh Laboratory, London, UK (1958); G.F. Newell, SIAMReview, 575, 223�240 (1965).4. B.S. Kerner, S.L. Klenov, G. Hermanns, P. Hemmerle, H. Rehborn,and M. Shrekenberg, Phys. Rev. E 88, 054801 (2013).Phase transitions in deterministi tra� �owmodelsA.A. Lykov, V.A. Malyshev, and M.V. MelikianLomonosov Mosow State University, Mosow, RussiaTheoretial modelling and omputer simulation of transportationsystems is a very popular �eld, see very impressive review [2℄. There aretwo main diretions in this researh - maro and miro models. Maroapproah does not distinguish individual transportation units and usesanalogy with the �uid �ow in hydrodynamis, see [1℄. Stohasti miromodels are most popular and use almost all types of stohasti proesses:mean �eld, queueing type and loal interation models. We onsider hereompletely deterministi transportation �ows. Although not as popularas stohasti tra�, there is also a big ativity in this �eld, see [3,4,5,6℄.In these papers interesting results are obtained for su�iently generalprotools.Here we follow another strategy: for simplest possible protools we tryto get results as onrete as possible. Namely, we onsider the one-wayroad tra� model organized as follows.At any time t ≥ 0 there is �nite or in�nite number of point partiles(may be alled also ars, units et.) with oordinates zk(t) on the real



Preditive models for ongested tra� 195axis, enumerated as follows
... < zn(t) < ... < z1(t) < z0(t) (1)We assume that the rightmost ar (the leader) moves �as it wants�, thatis the trajetory z0(t) is often assumed to have non	negative veloity.Our problem is to �nd the simplest possible loal protool (ontrolalgorithm) whih would guarantee both safety (no ollisions), stable(or even maximal) density of the �ow or maximal urrent. Otherwisespeaking, we try to �nd ontrol mehanism whih guarantees that thedistane between any pair of neighbouring ars is lose (on all timeinterval (0,∞)) to some (given a priori) �xed number, that de�nes thedensity of the �ow.More exatly, denoting rk(t) = zk−1(t)− zk(t), and

I = inf
k>1

inf
t>0

rk(t), S = sup
k>1

sup
t>0

rk(t),we try to get the bounds - lower positive bound on I and upper boundon S - as lose as possible.Loality (of the ontrol) means that the �driver� of the k-th ar,at any time t, knows only its own veloity vk(t) and the distane
rk(t) from the previous ar. Thus, for any k ≥ 1 the trajetory zk(t),being deterministi, is uniquely de�ned by the trajetory zk−1(t) of theprevious partile.Using physial terminology one ould say that if, for example, rk(t)beomes larger than d, then some virtual fore Fk inreases aelerationof the partile k, and vie-versa. Thus the ontrol mehanism is ofthe physial nature, like fores between moleules in rystals but our�fores� are not symmetri. Thus our system is not a hamiltonian system.Nevertheless, our results resemble the dynamial phase transition in themodel of the moleular hain rapture under the ation of external fore,see [7℄. However here we do not need the double saling limit used in [7℄.We will see however that for the stability, besides Fk, also fritionfore −αvk(t), restraining the growth of the veloity vk(t), is neessary,where the onstant α > 0 should be hosen appropriately. Taking Fk tobe simplest possible

Fk(t) = ω2(zk−1(t)− zk(t)− d) (2)we get that the trajetories are uniquely de�ned by the system of
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d2zk
dt2

= Fk(t)− α
dzk
dt

= ω2(zk−1(t)− zk(t)− d)− α
dzk
dt

(3)Stability depends not only on the parameters α, ω, d but also on theinitial onditions and on the movement of the leader (on its veloity andaeleration). This is easy to understand for the ase of N +1 partiles.For example, for N = 1, where the alulations are omp	letely trivial,assume also the simplest leader movement
z0(t) = vt, t ≥ 0 (4)Then, if initial ondition for the seond partile are

z1(0) = −a = −(d+
α

ω2
v), ż1(0) = v,then z1(t) = −a + vt for any d, α, ω. However, if we hange only theinitial veloity ż1(0) = w to some w > 0, then for any α, ω there exists

w1 = w1(α, ω, d) suh that for any w ≥ w1 ollision ours.For N = 2, 3, ... the situation beomes more and more ompliated,and its study has no muh sense. That is why we study, in the spae oftwo parameters α, ω (for �xed d), stability onditions, whih are uniformin N and in large lass of reasonable initial onditions and reasonablemovement of the leader.Natural (reasonable) initial onditions are as follows: at time 0 itshould be
0 < inf

k>1
rk(0) ≤ sup

k>1
rk(0) <∞As for the leader movement, it is sometimes su�ient to assume thatthe funtion z0(t) were ontinuous, but in other ases it is assumed totwie di�erentiable and has the following bounds on the veloity andaeleration of the leader:

sup
t>0

|ż0(t)| = vmax, sup
t>0

|z̈0(t)| = amax, (5)It appears that under these onditions there are 3 setors in thequarter-plane R2
+ = {(α, ω)}: 1) α > 2ω, where we an prove stability,2) α <

√
2ω, where we an prove instability, and the setor 3) √2ω ≤

α ≤ 2ω, where we an prove stability only for more restrited lasses ofinitial onditions and of the leader motion.



Preditive models for ongested tra� 197Referenes1. Prigogine I., Herman R. Kineti theory of vehiular tra�. //NewYork: Elsevier, 1971.2. Helbing D. Tra� and related self-driven many partile systems.// Rev. Mod. Phys. 73, 2001. P. 1067�1141.3. Feintuh A., Franis B. In�nite hains of kinemati points.//Automatia 48, 2012. P. 901�908.4. Qing Hui, Jordan M. Berg. Semistability theory for spatiallydistributed systems. //Proeedings of the IEEE Conferene ondeision and ontrol, January 2009.5. Melzer S.M., Kuo B.C. Optimal regulation of systems desribed bya ountably in�nite number of objets. //Automatia, 1971. V. 7,P. 359�366. Pergamon Press.6. Swaroop D., Hedrik J.K. String stability of interonnetedsystems. //IEEE transations on automati ontrol, Marh 1996.V. 41, � 3.7. Malyshev V.A., Musyhka S.A. Dynamial phase transition in thesimplest moleular hain model. //Theoretial and mathematialphysis, 2014. V. 179, � 1, P. 123�133.Computer simulation of tra� �ow andmathematial desriptionA.V. PodorogaLomonosov Mosow State University, Mosow, Russian FederationThere are a lot of di�erent approahes in the tra� �ow theory. Oneof the most popular is marosopi approah. Under ertain onditionsa tra� �ow an be onsidered as a �ux of speial partiles. We denotedensity and veloity of tra� �ow on a neighbourhood of x at themoment t as ρ(x, t) and v(x, t), respetively. The value of �ow q(x, t)is the average amount of vehiles, that passed throw the point x inthe unitary interval of time (for example an hour) at the moment t.These quantities are related by the onservation law, the ontinuityof �ow and the equation of state. They are similar with ones fromthe hydrodynamis. The ar veloity should be high if the density is low,and ontroversially otherwise. Therefore we an assume that veloity isa ertain steadily dereasing funtion of the density
v = V (ρ), V = V (ρ) ↓, 0 6 ρ 6 ρmax. (1)



198 Preditive models for ongested tra�Here ρmax is the value orresponds to a tra� jam. One of the mostimportant relation is
q = Q(ρ), 0 6 ρ 6 ρmax, (2)whih alled the fundamental diagram. This dependene between the �owvalue and the density plays the key role in the tra� �ow theory.In this report we disuss some problems onneted withreonstrution of the dependene (1) and (2) using omputer simulation.We introdue a program �Cars� that simulates a tra� �ow usingmirosopi approah. Therefore, every vehile is treated as an individualobjet. It has the set of parameters, suh as length, maximum speed,maximum and minimum aeleration and deeleration and so on. Allthese parameters orrespond with the real values. Every ar movesusing the same algorithm that prevents a olliding but allows to moveas quikly as possible. The algorithm handles the data available toan �ordinary� driver. The ontrol parameter is the aeleration of thevehile. The on�guration of the road is a single�lane one�way road. Wealso examine a ring road that allows us to study an autonomous lustersof ars. Using our program we an obtain a numerous amount of data.Then we use these data for establishing onnetions between variablesand for revealing some typial phenomena.We emphasize some thematis of our researh:1. Connetion between marosopi quantities ρ, v, q withmirosopi parameters of individual ars;2. Oular demonstration of mathematial e�ets whih exist in quasi-linear equation theory (strong disontinuity, shok waves, Rankine�Hugoniot ondition, bifuration of solutions and et.)3. Forming of the tra� jams whih move bakwards.Many of disussed phenomena were mentioned in previous papers [1�6℄.Referenes1. Gasnikov A. V. i dr. Vvedenie v matematiheskoe modelirovanietransportnókh potokov: Uhebnoe posobie [Introdution in mathe-matial simulation of tra� �ows℄/ Pod red. A. V. Gasnikova.Izdanie 2-e, ispr. i dop.�M.: MCNMO, 2013.�427 p.2. Lighthill M. J., Whitham G. B. On Kinemati Waves. II. A Theoryof Tra� Flow on Long Crowded Roads // Proeedings of the Royal



Preditive models for ongested tra� 199Soiety of London. Series A, Mathematial and Physial Sienes.�1955.�Vol. 229, No 1178.�P. 317�345.3. Nagel K., Shrekenberg M. A ellular automaton model forfreeway tra� // Journal de Physique I Frane.�1992.�Vol. 2,No 12.�P. 2221�2229.4. Smirnov N. N., Kiselev A. B., Nikitin V. F., Umashev M. V.Matematiheskoe modelirovanie avtotransportnykh potokov [Ma-thematial simulation of tra� �ows℄.�M.: MGU, 1999.�31 p.5. Lax P. D. Hyperboli Partial Di�erential Equations (Courant Le-ture Notes). Courant Institute of Mathematial Sienes. � NY:Amerian Mathematial Soiety, 2006 � 217 p.6. Evans L.C. Partial Di�erential Equations. � (Graduate Studies inMathematis. Vol. 19). Amerian Mathematial Soiety, 2010. �749 p.



Asymptoti analysis ofomplex stohasti systems
Limit theorems for multihannel queuingsystems with abandonmentsL.G. Afanasyeva and A.V. TkahenkoLomonosov Mosow State University, Mosow, RussiaWe onsider queuing systems with r heterogeneous hannels.Theservie time ηin of the n-th ustomer by the i-th server has distributionfuntion Bi(x) with �nite mean β−1

i . Let β =
∑r

i=1 βi. Customers areserved in order of their arrivals at the system. Servie times of ustomersare independent random variables.The input �ow X(t) is assumed to be regenerative. Let θi be the
i-th regeneration point of X(t), τi = θi − θi−1, ξi = X(θi) − X(θi−1)(i = 1, 2, . . . ; θ0 = 0). Then τi is the regeneration period, ξi is the numberof ustomers arrived during the i-th regeneration period. Assume that
a = Eξi <∞, τ = Eτi <∞, and λ = lim

t→∞
X(t)
t = aτ−1 a.s..Let {vn}∞n=1 be the sequene of independent idential distributedrandom variables and it does not depend on the input �ow and servietimes. The random variable vn an be an improper one, i.e. α = P{vn =

∞} ≥ 0. Denote C(x) = P{vn ≤ x|vn < ∞}. Moreover vn bounds thewaiting time of the nth ustomer in the system, i.e. if the nth ustomerdoes not start it's servie during the time vn then it leaves the systemwithout servie at all. Let q(t) be a number of ustomers in the system attime t. Under some additional assumptions q(t) is a regenerative proessand θi is it's point of regeneration if q(θi − 0) = 0.Theorem 1. The proess q(t) is ergodi i� ρ = αλβ−1 < 1.



Asymptoti analysis of omplex stohasti systems 201The proof is based on the lemma about stohasti boundednessand ergodiity of the regenerative proess proved in [Afanasyeva,Tkahenko, 2014℄ and onstrution of majorizing proess. Then resultsfor regenerative proess with �nite mean of the period of regeneration[Thorisson, 1987℄ are applied.First we give the following result onerning so alled super-heavytra� situation (ρ ≥ 1).Theorem 2. If ρ > 1 (ρ = 1) and for some δ > 0

Eτ2+δ
1 <∞, Eξ2+δ

1 <∞, E(ηi1)
2+δ <∞, i = 1, r, (⋆)then the normalized proess q̂n(t) = q(nt)−β(ρ−1)nt

σ̂
√
n

weakly onverges onany �nite interval [0, t] to Brownian motion (absolute value of Brownianmotion) as n→ ∞. Here
σ̂2 = σ2

X + σ2
β , σX =

ασ2
ξ

τ
+

(αa)2σ2
τ

τ3
− 2aα2cov(ξ1, τ1)

τ2
,

σ2
β =

r∑

i=1

σ2
i β

3
i , σ

2
τ = V ar(τ1), σ

2
ξ = V ar(ξ1), σ

2
i = V ar(ηi1), i = 1, r.In order to prove this theorem we use Brownian approximation formodi�ed multihannel systems [Iglehart, Whitt, 1970℄ and onstrut twomajorizing systems.Seond we fous on the proess q(t) in the heavy-tra� situation(ρ ↑ 1). We onsider time-ompression asymptoti. Namely the input�ow is given by the relation

Xn(t) = X

(
ρ−1

(
1− 1√

n

)
t

)so that the tra� oe�ient depends on the parameter n and ρn ↑ 1as n → ∞. Let qn(t) be the proess q(t) for the system with input �ow
Xn(t).Theorem 3. Under onditions (⋆) the normalized proess q̃n(t) =
qn(nt)√

n
weakly onverges on any �nite interval [0, t] as n → ∞ to thedi�usion proess with re�eting at the origin and oe�ients (−β, σ̃2),where σ̃2 = σ2

β +
σ2
X

ρ .The proof is based on the onstrution of the funtional limit of the�uid proess [Whitt, 2002℄ and some estimates for number of ustomersin the system.



202 Asymptoti analysis of omplex stohasti systemsReferenes1. Afanasyeva, L. and Tkahenko, A., Multihannel QueueingSystems with Regenerative Input Flow // Theory of Probabilityand Its Appliations, 2014, V.58, No. 2, P. 174�192.2. Thorisson, H., A omplete oupling proof of Blakwell`s renewaltheorem// Stohasti Proesses and Their Appliations, 1987, V.26, P. 87�97.3. Iglehart, D.L. and Whitt, W., Multiple Channel Queues in HeavyTra�. I // Advanes in Applied Probability, 1970, V. 2, No. 1, P.150�177.4. Whitt W. Stohasti-proess limits: an introdution to stohasti-proess limits and their appliation to queues: Springer Sieneand Business Media, 2002.Waiting-time tail probabilities in queue withregenerative input �ow and unreliable serverS.Z. AibatovLomonosov Mosow State University, Mosow, RussiaWe onsider a single-server queueing system with a regenerative input�ow A(t) (Reg/G/1). Here A(t) is the number of ustomers arrivedduring [0, t]. The random variable θi is said to be the ith regenerationmoment of A(t) and τi = θi − θi−1 is the ith regeneration period. Let
ξi = A(θi − 0) − A(θi−1) be the number of arrived ustomers duringthe ith regeneration period. Assume that Eξi < ∞ and Eτi < ∞. Theintensity of A(t) is the limit λ = lim

t→∞
A(t)
t with probability one (w.p.1).It is easy to see that λ = Eξ1

Eτ1
.Assumption 1.The greatest ommon divisor of numbers (i =

1, 2, . . . ) suh that P(ξ1 = i) > 0 is equal to one.Servie times of ustomers are de�ned by the sequene {ηn}∞n=1 thatonsists of i.i.d. random variables and does not depend on A(t). Thedistribution funtion of η1 is B(x), b = Eη <∞ and b(s) = Ee−sη1 .Let W (t) be the virtual waiting time proess and Wn = W (θn − 0),
wn = W (tn − 0). Here tn is the moment of the nth ustomer arrivalat the system. De�ne funtions Ψ(x) = lim

t→∞
P(W (t) ≤ x), Φ(x) =

lim
n→∞

P(Wn ≤ x) and F (x) = lim
n→∞

P(wn ≤ x).It is known (see e.g. [1℄) that Ψ(x), Φ(x) and F (x) are distribution



Asymptoti analysis of omplex stohasti systems 203funtions if and only if the tra� intensity
ρ = λb < 1.Here we aim to analyze the asymptoti behavior of funtions Ψ(x), Φ(x)and F (x) as x→ ∞. For any distribution funtion F (x) we put F̄ (x) =

1−F (x). As usual f(x) ∼ h(x) as x→ ∞ if lim
x→∞

f(x)
h(x) = 1. As in [3℄, wede�ne the following lass of distributions.De�nition 1.A distribution funtion F (x) on R with �nite meanbelongs to the lass of the strong subexponential distributions if

∫ x

0

F̄ (x− y)F̄ (y)dy ∼ 2mF̄ (x),where m =
∫∞
0 F̄ (y)dy.Theorem 1.Let B(x) be a strong subexponential distribution funtionand Assumption 1 be ful�lled.(i) If there exists c > b suh that P(ξ > x/c) = o(B̄(x)), then

Φ̄(x) ∼ λ

1− λb

∫ ∞

x

B̄(y)dy as x→ ∞. (1)(ii) If there exists c > b suh that √P(ξ > x/c) = o(B̄(x)), then (1)holds for the funtion F̄ (x).(iii) If there exists c > b suh that √P(ξ > x/c) = o(B̄(x)), Eτ2 < ∞,then (1) holds for the funtion Ψ̄(x).Further we onsider a queueing system Reg/G/1 with an unreliableserver. The breakdowns of the server our only when it is oupied by austomer. Besides, if the server is in the working state then breakdownsappear at random in the sense that the time until the next breakdownis exponentially distributed with a parameter ν. After breakdown theserver is repaired during the random time with distribution funtion
D(x), mean d and d(s) =

∞∫
0

e−sxdD(x). There are various disiplinesfor ontinuation of the servie after server restoration. Here we onsiderthe preemptive repeat di�erent servie disipline when servie is repeatedfrom the start and the servie time after restoration is independent ofthe origin servie time. This disipline was onsidered in the pioneeringpaper [4℄ where the notion of ompletion time was introdued. This



204 Asymptoti analysis of omplex stohasti systemsnotion made it possible to apply results for systems without interruptionsto investigate a system with unreliable server. Let us remind thatompletion time is the sojourn time of the ustomer on the server withregard of repairs of the server (if there are). Introdue the distributionfuntion of ompletion time Bc(x) and mean bc, then
B̄c(x) ∼

1− b(ν)

b(ν)
D̄(x) as x→ ∞,

bc =
1− b(ν)

b(ν)

(
1

ν
+ d

)
.Corollary 1. For a queueing system with an unreliable server let thedistribution funtion of the repair time D(x) be strong subexponential.All onditions from (iii) of Theorem 1 are satis�ed with Bc(x) insteadof B(x) and Assumption 1 holds. Then

Φ̄(x) ∼ Ψ̄(x) ∼ F̄ (x) ∼ λ(1 − b(ν))

(1 − λbc)b(ν)

∫ ∞

x

D̄(y)dy as x→ ∞.As we an see from Corollary 1, if we have the preemptive repeatdi�erent servie disipline then the distribution funtion of servie timehas no in�uene on asymptoti behavior of Ψ̄(x). A queueing system
M/G/1 with preemptive resume servie disipline was onsidered in [2℄.For this disipline the ustomer's servie after a restoration ontinuousfrom the point at whih it was interrupted. It was shown that if B(x)and D(x) are regularly varying distributions then

B̄c(x) ∼ B̄

(
x

1 + νd

)
+ νbD̄(x) as x→ ∞.Thus if the funtion D̄(x) is lighter than B̄(x) as x → ∞ then thedistribution B(x) de�nes asymptotis of Ψ̄(x).These results mean that the asymptoti behavior of Ψ̄(x) as x →

∞ is ompletely de�ned by the intensity λ of the input �ow and thedistribution funtion of the servie time (or repair time if the server isunreliable). Therefore the struture of the input �ow does not play anyrole if ondition (iii) holds. This ondition means that the tail of ξ isessentially lighter than tail of η. We strongly believe that otherwise thedominate part may belong to the distribution of ξ.



Asymptoti analysis of omplex stohasti systems 205Referenes1. Afanaseva L.G., Bashtova E.E. Coupling method for asymptotianalysis of queues with regenerative input and unreliable server //Queueing Systems. 2014. V. 76, � 2. P. 125�147.2. Aibatov S.Z. Large deviation probabilities for the system
M/G/1/∞ with an unreliable server // Teor. Ver. Prim. 2016.V. 61, � 1. P. 1�9. (in Russian)3. Foss S., Korshunov D., Zahary S. An introdution to heavy-tailedand subexponential distributions. New York: Springer, 2011.4. Gaver D.P. A waiting line with interrupted servie inludingpriority // J. Rl. Stat. So. B. 1962. V. 24, P. 73�90.Limit theorems for queuing system with anin�nite number of servers and regenerativeinput �owE.E. Bashtova and E.A. ChernavskayaLomonosov Mosow State University, Department of Mathematis andMehanis, Mosow, RussiaThis paper fouses on a queuing system S with an in�nite numberof servers and regenerative input �ow X(t), given on (Ω,F ,P). Alltrajetories are left-ontinuous non-dereasing funtions with integervalues, X(0) = 0. The de�nition of this proess is [3℄.De�nition. The �ow X(t) is regenerative if there exists an inreasingsequene of random variables {θi}i≥0, θ0 = 0, suh that the sequene

{κi}∞i=0 = {(X(θi−1 + t)−X(θi−1)), θi − θi−1, t ∈ [0; θi − θi−1)}∞i=0onsists of independent identially distributed random elements on
(Ω,F ,P).The value θi is alled the i-th moment of regeneration, τi = θi − θi−1is the i-th period of regeneration.We assume that {τi}∞i=1 are independent identially distributedrandom variables(i.i.d.r.v.), with distribution funtion F (x).Let ξi = X (θi)−X (θi−1) be the number of ustomers arrived duringthe i-th regeneration period.Servie times of ustomers {ηij , j = 1, . . . , ξi, i ≥ 1} are i.i.d.r.v. withdistribution funtion B(t). Denote B(t) = 1−B(t). We assume that thefollowing ondition is ful�lled.



206 Asymptoti analysis of omplex stohasti systemsCondition. For the funtion B(t) asymptoti behavior takes plae
B(t) ∼ L(t)

tβ
as t→ ∞,

0 < β < 1. Here L(t) is slowly varying funtion as t→ ∞[4℄.The fous of this paper is the proess q(t), whih is the number ofustomers in the system S at time t.Denote λ = 1
1−β

Eξ1
Eτ1

. Let us formulate our results.Theorem 1.Suppose that Eτr1 <∞, r > 2, Eξ21 <∞. Then
q(t)− λt1−βL(t)√

t1−βL(t)
d→ N (0, λ) , as t→ ∞.Theorem 2.Suppose that Eτr1 <∞, r > 2, Eξ21 <∞. Then

q(t)

t1−βL(t)
p→ λ, as t→ ∞.Desription of auxiliary systems and their relationship withthe initial. To study the asymptoti behavior of the queue length inthe system S we introdue two auxiliary systems. In the �rst system

S1 ustomers enter only at the beginning of the regeneration period
[θi−1, θi], by group ξi , i ≥ 1. In the seond system group of ustomersomes at the end of the period of regeneration, we denote it S2. Let
qi(t) be the number of ustomers in the system Si at time t respetively,
i = 1, 2.Let ∆(t) be the number of ustomers that left system S1, but notleft S2 at time t. For ∆(θn) the following representation holds

∆(θn) =
n∑

i=1

ξi∑

j=0

κij(θn),where κij(θn) = {1, θn − θi ≤ ηij < θn − θi−1,

0, otherwise.Note that q1(t), q2(t), and q(t) satisfy following relations withprobability 1
q1
(
θN(t)

)
≤ q(t) ≤ q2

(
θN(t)

)
+ξN(t)+1, q2

(
θN(t)

)
= q1

(
θN(t)

)
+∆

(
θN(t)

)
.



Asymptoti analysis of omplex stohasti systems 207The last inequality shows that in order to obtain limit theorems forthe proess q(t), we need limit theorems for q1 (θN(t)

), ξN(t)+1, ∆N(t).Some auxiliary results. Let us formulate the limit theorem for
q1
(
θN(t)

), ξN(t)+1, ∆ (θN(t)

). Denote En = 1
1−β

Eξ1
Eτβ

1

n1−βL(n).Theorem 3.Let Eτr1 <∞, r > 2, Eξ21 <∞. Then
q1(θn)− En√

En

d→N (0, 1) as n→ ∞.Lemma 1.Let Eξ1 <∞, Eτr1 <∞, r > 2. Then
∆(θn)

n
1−β
2

p→ 0, as n→ ∞.Lemma 2. For any k ∈ N

lim
t→∞

P
(
ξτN(t)+1

= k
)
=

1

Eτ1

∫ ∞

0

P (τ2 > x, ξ2 = k) dx.In order to obtain similar results for q1(θN(n)), and ∆(θN(n)) as inTheorem 3 and Lemma 1, we need the following Theorem.Theorem 4. (Theorem 5,[2℄) Let Yn d→ Y , n→ ∞ and1. Nn

n

p→ N , n→ ∞ with P(0 < N <∞) = 1,2. If Yn is R-mixing with respet to σ(N), that is, for eah A suhthat P(N ∈ A) > 0 holds P(Yn ∈ ∗|N ∈ A) → P(Y ∈ ∗),3. if ∆n,c = max
|m−n|<nc

|Ym − Yn|, then
lim
c→0

sup
{B:P(B)>0}

lim sup
n→∞

P(∆n,c > ε|N ∈ B) = 0.Then YNn

d→ Y.Veri�ation onditions of this theorem is based on results of followinglemmas. Let F be σ-algebra, formed by variables {ξi, θi}∞i=1.Lemma 3.Sequene {Zm = Ym − Yn}m≥n forms a onditional N -demimartingale given F [1℄.Lemma 4.Let Eτr1 < ∞, r > 2, Eξ21 < ∞. For any onstant 0 <
c < 1 there exists n0(c) suh that for n > n0(c) we have the followinginequality for limits in probability
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n→∞

E
(
(Yn−Yn(1−c))

2|F
)

n1−βL(n)
≤ C1

(
1− c1−β − (1− c)1−β

)
+ C2c

1−β,2. lim
n→∞

E
(
(Yn−Yn(1+c))

2|F
)

n1−βL(n)
≤ C1

(
(1 + c)1−β − c1−β − 1

)
+ C2c

1−β.for some C1, C2 Referenes1. Rao B. L. S. P. Assoiated sequenes, demimartingales andnonparametri inferene. - Springer Siene & Business Media,2012.2. Durrett R. T., Resnik S. I. Weak onvergene with random indies//Stohasti Proesses and their Appliations. - 1977. - T. 5. - No.3. - P. 213-220.3. Cox D. R. et al. Renewal theory. - London : Methuen, 1962. - T.1.4. Seneta E. Regularly varying funtions. - 1976.On ergodi averaging with and withoutinvariant measure∗M.L. BlankRussian Aademy of Si. Inst. for Information TransmissionProblems,and National Researh University Higher Shool ofEonomis, Mosow, RussiaThe lassial Birkho� ergodi theorem in its most popular versionsays that the time average along a single typial realization of a Markovproess is equal to the spae average with respet to the ergodiinvariant distribution. This result is one of the ornerstones of the entireergodi theory and its numerous appliations. In this talk I'll addresstwo questions related to this subjet: how large is the set of typialrealizations, in partiular when there are no invariant distributions, andhow this is onneted to properties of the so alled natural measures(limits of images of �good� measures under the ation of the system).Our main results onern with neessary and su�ient onditionsunder whih for a given referene measure (e.g. Lebesgue measure),whose support might be muh larger than the support of the invariantone, the set of typial initial points is of full measure. It turns out that one
∗This researh is supported by RFBR and RNF grants.



Asymptoti analysis of omplex stohasti systems 209of the main assumptions here is the ergodiity of the natural measure.To deal with the situation when the invariant measure does not exist weextend the notion of ergodiity to measures being non invariant.To give an example of a system without invariant distributionssatisfying our setup, onsider the following deterministi Markov proess:a family of maps from the unit dis X := {(φ,R) : 0 ≤ φ < 2π, 0 ≤ R ≤
1} into itself de�ned in the polar oordinates (φ,R) by the relation:

T (φ,R) :=

:=

{
(φ + 2πα+ β(R − r) mod 2π, γ(R− r) + r) if r(R − r) 6= 0
(φ + 2πα mod 2π, (1 + r)/2) otherwisewith the parameters α, β, γ, r ∈ (0, 1). One an show that forany probability measure µ absolutely ontinuous with respet to theLebesgue measure, the sequene of measures 1

n

∑n−1
k=0 T

k
∗ µ (Cesaroaverages of images of the measure µ under the ation of T ) onvergesweakly to a ertain limit measure µT on the irle {R = r}, but thismeasure is no longer invariant. Depending on the hoie of the rotationparameters α, β ∈ (0, 1) properties of the set of µT -typial points turnout to be very di�erent. In partiular, if these parameters are rationallyindependent, the limit measure is unique and the set of µT -typial pointsoinides with the entire unit disk.Questions disussed above turn out to be espeially atual in thease of large systems, when even in the presene of ergodi invariantmeasures, their supports over only a small part of the phase spae.



210 Asymptoti analysis of omplex stohasti systemsAsymptoti behavior and stability of someapplied probability modelsE.V. BulinskayaLomonosov Mosow State University, Mosow, RussiaApplied probability researh domains suh as insurane, inventoryand dams, �nane, queueing theory, reliability and some others an beonsidered as speial ases of deision making under unertainty (orrisk management) aimed at the systems performane optimization, thuseliminating or minimizing risk.The ruial question in all investigations pertaining to deisionmaking is: How to hoose an appropriate mathematial model? Therealways exists a trade-o� between simpliity and preision. A simplemodel gives a possibility of easily obtaining an expliit solution. Howeverthe poor model �t is the �st soure of deision errors. A ompliatedmodel giving preise desription may also lead to errors. Namely,numerial solution needed for ompliated models and parametersvariability onstitute the seond soure of deision errors. Perturbationsof the underlying proesses provide the third soure of deision errors.Thus, the model stability to small �utuations of model parameters anddistributions of basi proesses is a must, see, e.g., [1�3℄ and referenestherein.It is well known that the same mathematial model an arise invarious appliations. So, for ertainty, we are going to speak belowabout insurane models, although many onlusions will be valid forother �elds. The primary task of insurer is redistribution of risks andsatisfation of poliyholders laims. This explains the popularity ofreliability approah, that is, thorough analysis of ruin probability. Thelassial Cram�er-Lundberg model introdued in 1903 and signi�antlydeveloped during the �rst part of the 20-th entury is still thebase for many investigations and generalizations. Being a orporation,insurane ompany has a seondary but very important task, namely,dividends payment to its shareholders. So, the alternative so-alledost approah was started by De Finetti in 1957, see [4℄. Modernperiod in atuarial sienes evolution is haraterized by onsiderationof a larger lass of stohasti proesses. Not only ompound Poissonproesses desribe insurane ompany performane but renewal andregeneration proesses, martingales, di�usion, Markov, semi-Markov andL�evy proesses. Moreover, interplay between insurane and �naneis typial nowadays, see, e.g. [5℄. Banks are selling insurane and



Asymptoti analysis of omplex stohasti systems 211reinsurane ontrats whereas insurane ompanies are interested ininvestment and apital injetions, see, e.g. [6�8℄.Sine deisions about reinsurane and dividends payment are usuallymade at the end of the year disrete-time models were introdued,see, e.g. [9�12℄. It turned out that suh models an also be used forapproximation of ontinuous-time ones.We begin by treating the models studied in [11,12℄ and their generali-zation to the ase of two-dimensional laims. Optimal and asymptotiallyoptimal poliies are established solving Bellman funtional equations.Systems stability is veri�ed by means of Sobol' method and loalsensitivity analysis. The results are used to implement a numerialalgorithm letting obtain some approximations to optimal solutionsfor ontinuous-time models. Convergene rate to limit distribution isalso studied using various metris, see, e.g. [13℄. In ase of unknowndistributions of underlying proesses it is appropriate to use stohastiorders to ompare various models. Finally, we apply empirial proesses(see [14℄) to get statistial inferene enabling us to use a sequene ofobservations for alulations of optimal poliy parameters.Referenes1. Oakley J.E. and O'Hagan A. Probabilisti sensitivity analysis ofomplex models: a Bayesian approah // J. R. Statist. So. B.2004. V. 66, Part 3. P. 751�769.2. Saltelli A., Tarantola S. and Campolongo F. Sensitivity analysis asan ingredient of modeling // Statist. Si. 2000. V. 15. P. 377�395.3. Sobol' I.M. Sensitivity analysis for nonlinear mathematial models// Math. Modlng Comput. Expt. 1993. V. 1. P. 407�414.4. De Finetti B. Su un'impostazione alternativa della teoria ollettivadel rishio // Transations of the XV-th International Congress ofAtuaries. 1957. V. 2. P. 433�443.5. Yang H., Gao Wei and Li J. Asymptoti ruin probabilities for adisrete-time risk model with dependent insurane and �nanialrisks // Sandinavian Atuarial Journal. 2016. � 1. P. 1�17.6. Dikson D.C.M. and Waters H.R. Some optimal dividendsproblems // ASTIN Bulletin. 2004. V. 34. P. 49�74.7. Eisenberg J., Shmidli H. Optimal ontrol of apital injetions byreinsurane in a di�usion approximation // Bl�atter der DGVFM.2009. V. 30, � 1. P. 1�13.8. Kulenko N., Shmidli H. Optimal dividend strategies in a Cram�er-Lundberg model with apital injetions // Insurane: Mathematis



212 Asymptoti analysis of omplex stohasti systemsand Eonomis. 2008. V. 43. P. 270�278.9. Bulinskaya E. On the ost approah in insurane // Review ofApplied and Industrial Mathematis. 2003. V. 10, � 2. P. 276�286.10. Li Sh., Lu Yi and Garrido J. A review of disrete-time risk models// Rev. R.Aad. Cien. Serie A. Mat. 2009. V. 103, � 2. P. 321�337.11. Bulinskaya E. Asymptoti Analysis of Insurane Models with BankLoans // New Perspetives on Stohasti Modeling and DataAnalysis. Athens, Greee: ISAST, 2014. P. 255�270.12. Bulinskaya E. and Gromov A. Asymptoti Behavior of theProesses Desribing Some Insurane Models // Communiationsin Statistis - Theory and Methods. 2016. V. 45, � 6. P. 1778�1793.13. Rahev S.T., Stoyanov S.V. and Fabozzi F.J. Advaned StohastiModels, Risk Assessment, Portfolio Optimization. Hoboken, NewJersey: J.Wiley and Sons. 2008.14. Shorak G.R., Wellner J.A. Empirial Proesses with Appliationto Statistis. New York: J.Wiley and Sons. 1986.Stability of the solution in the optimalreinsurane problemJ.V. GusakLomonosov Mosow State University, Mosow, RussiaWe onsider a periodi - review insurane model under thefollowing assumptions. One-period insurane laims form a sequeneof independent identially distributed nonnegative random variables
{Xk}, k ≥ 1. Eah Xk has a distribution as that of the random variable
X with �nite mean and umulative distribution funtion FX .In order to avoid ruin the insurer maintains the ompany surplus abovea hosen level a by apital injetions at the end of eah period. Anonproportional reinsurane is applied for minimization of total expeteddisounted injetions hnX

(u) during a given planning horizon of nperiods, where u is the initial surplus of the insurane ompany, u ≥ a.Insurane and reinsurane premiums are alulated using the expetedvalue priniple. The optimal reinsurane strategy for this problem hasbeen established in the paper[1℄.This work relies on the results obtained in [1℄ and onsiders thestability of minimal expeted injetions to the �utuation of laimdistribution. More preisely, suppose one-period laim Xk, k ≥ 1 has thesame distribution as random variable Y with umulative distribution



Asymptoti analysis of omplex stohasti systems 213funtion FY , whih in turn di�ers from funtion FX . In this ase, howdoes the amount of optimal apital injetions hange? The followingtheorem gives us the answer to this question under the assumptionthat random variables X and Y are lose in Kantorovih metri. Themetri is alulated aording to the de�nition in [2℄ and equals to
κ(X,Y ) =

∫∞
0

|FX(t)− FY (t)|dt.Theorem. Let X and Y be nonnegative random variables with �nitemean de�ned on the same probability spae, than the following inequalityholds for every n ≥ 1

sup
u≥a

|hnX
(u)− hnY

(u)| ≤
(

n−1∑

i=0

αiCn−i

)
(1 + l +m)κ(X,Y ),where 0 < α < 1 is a disount oe�ient, l > 1 and m > l denote safetyloadings on the insurane and reinsurane premiums respetively, hnYrefers to minimal disounted expeted injetions when one-period laimdistribution funtion is equal to FY , Cn−i =
1−αn−i

1−α .Due to the fat that in pratie theoretial distributions are usuallyunknown, we also investigate the stability of the solution, whendistribution funtions FX , FY are replaed by their empirial estimates.Referenes1. Bulinskaya E.V., Gusak J.V, Muromskaya A.A. Disrete-timeInsurane Model with Capital Injetions and Reinsurane.Methodology and Computing in Applied Probability. 2015. V.17,4, P. 899�914.2. Rahev S.T., Klebanov L., Stoyanov S.V., Fabozzi F. The Methodsof Distanes in the Theory of Probability and Statistis. Springer-Verlag New York, 2013.On a lassial risk model with a step barrierdividend strategyA. MuromskayaLomonosov Mosow State University, Mosow, RussiaWe onsider an insurane ompany performane with dividends pay-ment. Aording to the Cramer-Lundberg model, the surplus of the



214 Asymptoti analysis of omplex stohasti systemsinsurane ompany paying dividends is as follows:
X(t) = x+ ct− S(t)−D(t), t ≥ 0.Here {S(t)} is a ompound Poisson proess with intensity λ,D(t) denotestotal dividends paid until t and x = X(0). Premiums are aquiredontinuously at the rate c and the laim amounts are nonnegative i.i.d.random variables with distribution funtion F (y). Let T also denote thetime of ruin, namely, T = inf{t : X(t) < 0}.Dividends are paid in onformity with some dividend strategy. Oneof the most popular dividend strategies are so-alled onstant barrierstrategies. In the framework of the onstant barrier strategy with level

b, no dividends are paid whenever X(t) < b and dividends at the rate care paid whenever X(t) = b. If X(t) > b, an amount X(t)− b is paid outimmediately as dividends. Constant barrier strategies were onsidered inmany papers devoted to dividend theory, suh as Gerber et al. [1℄ andBuhlmann [2℄. However onstant barrier strategies have one signi�antdisadvantage, namely, the barrier level an not be hanged throughoutthe life of the insurane ompany. In this regard we examine modi�edbarrier strategies, aording to whih the barrier level b an be hangedafter the moments of laim ourrenes Ti (step barrier strategies).At �rst let us onsider the model with the barrier that an be hangedonly a �nite number of times (after eah of the �rst (n − 1) laimourrenes). In this ase barrier level hanges up to the ruin time inonformity with the following rule: b = bi on the interval [Ti−1, Ti) for
1 ≤ i ≤ n − 1 (we assume T0 = 0) and b = bn if t ≥ Tn−1. The stepbarrier funtion is supposed to be nondereasing: b1 ≤ b2 ≤ . . . ≤ bn.Let V (x, b) and V (x, b1, . . . , bn) denote the expeted disounted divi-dends paid until ruin in the models with onstant barrier and step barrierstrategies respetively. Then the following theorem holds true.Theorem 1. For all 0 ≤ x ≤ b1 and b1 ≤ b2 ≤ . . . ≤ bn, n ≥ 2, thefuntion V (x, b1, . . . , bn) an be expressed as:
V (x, b1, . . . , bn) = V (x, bn) +

n−1∑

i=1

[1− V ′(bi, bn)]V[Ti−1,Ti)(x, b1, . . . , bi),where V[Ti−1,Ti)(x, b1, . . . , bi) is the mathematial expetation of thedisounted dividends paid on [Ti−1, Ti).Remark. Funtions V[Tk−1,Tk)(x, b1, . . . , bk), 1 ≤ k ≤ n − 1, an be



Asymptoti analysis of omplex stohasti systems 215alulated sequentially with the help of the law of total probability:
V[0,T1)(x, b1) =

c

λ+ δ
e−(λ+δ)

b1−x

c ,

V[Tk−1,Tk)(x, b1, . . . , bk) =

=

∫ b1−x

c

0

λe−(λ+δ)t

∫ x+ct

0

V[Tk−2,Tk−1)(x+ ct− y, b2, . . . , bk)dF (y)dt+

+

∫ ∞

b1−x

c

λe−(λ+δ)t

∫ b1

0

V[Tk−2,Tk−1)(b1 − y, b2, . . . , bk)dF (y)dt, k ≥ 2.Now let us onsider the probability of ruin ψ(x) = P (T <∞|X(0) = x)in the model with a barrier level that an be hanged after every laimourrene Tj , j ≥ 1, (i.e. in�nite number of times). It is also assumedthat the equation
λ+ rc = λ

∫ ∞

0

erydF (y)has the unique positive solution R. If this solution exists we all it theadjustment oe�ient or the Lundberg exponent ([3℄, [4℄). The oe�ient
R plays an important role in the estimation of the ruin probabilities, inpartiular, in our model we have the following result.Theorem 2. The ruin probability ψ(x) satis�es the inequality

ψ(x) ≤ e−Rx +
Rc

λ

∞∑

i=1

e−Rbi .This theorem is a generalization of the Lundberg inequality whih isproved for the lassial risk model without dividend payments.Examples of the step barrier funtions, for whih the upper boundfor the ruin probability is less than 1, will be given. Note that in theframework of the onstant barrier dividend strategy the ruin of theinsurane ompany ours almost surely.Referenes1. Gerber H.U., Shiu E.S.W. and Smith N. Maximizing dividendswithout bankrupty // ASTIN Bulletin. 2006. V. 1, � 36. P. 5�23.2. Buhlmann H. Mathematial methods in risk theory. Berlin, Heidel-berg: Springer-Verlag, 1970.3. Bulinskaya E.V. Risk theory and reinsurane, part 2 (in Russian).Mosow: Mosow State University, 2006.



216 Asymptoti analysis of omplex stohasti systems4. Shmidli H. Stohasti ontrol in insurane. London: Springer-Verlag, 2008.Weakly superritial branhing walks withheavy tails∗A.I. Rytova and E.B. YarovayaLomonosov Mosow State University, Mosow, RussiaSteklov Mathematial Institute, Mosow, RussiaBranhing random walks (BRWs) are usually desribed in termsof birth, death and walk of partiles. We onsider a ontinuous-time symmetri BRW on à multidimensional lattie. In [1℄, a detaileddesription of suh BRW for the ase of �nite variane of jumps and onesoure of branhing is given. In the present work we study the ase ofBRWs with heavy tails when intensities of the underlying random walkare subjeted to a ondition leading to in�nite variane of jumps, see,e.g., [2℄.Quite a number of authors investigated the random walks withheavy tails, see the bibliography in [3℄. Most of them, as a rule, haverestrited themselves to onsideration of the one-dimensional ase. Inthe multidimensional ase of a spatially homogeneous symmetri randomwalk with in�nite variane of jumps, proofs of global limit theoremsfor the transition probabilities of a random walk, in the ase when thetemporal and spatial variables jointly tend to in�nity, an be found in[4℄. The orresponding results were proved under an additional regularityondition imposed on the transition intensities of a random walk. In[5℄, a multidimensional analog of the well-known Watson's lemma (see,e.g., [6℄) was proven whih helps to investigate in [5℄ an asymptotibehaviour of the transition probabilities for �xed spatial oordinateswithout making any additional assumptions on the transition intensities.The goal of the work is to apply obtained results to �nd theasymptoti behavior of the moments for BRWs with in�nite variane ofjumps and the only branhing soure. Employing the sheme suggestedin [1℄ for BRWs with a �nite variane of jumps, we �nd the generatingfuntions, di�erential and integral equations for the moments of thenumbers of partiles, as in an arbitrary lattie point as on the entirelattie for BRWs with in�nite variane of jumps. Abandonment of the�niteness of the variane of jumps, as was shown in [2,7℄, leads to hanges
∗This researh is supported by the Russian Siene Foundation, projet no. 14-21-00162.



Asymptoti analysis of omplex stohasti systems 217in the BRW's properties: as a result the BRW beomes transient evenon one- and two-dimensional latties. The minimal value of the intensityof the branhing soure, under whih in the spetrum of the operatordesribing the evolution of the mean numbers of partiles there appeara positive eigenvalue, is alled ritial. The asymptoti behaviour ofGreen's funtions and eigenvalues of the evolutionary operator, for theBRW with heavy tails and intensities of the soure exeeding but stilllose the ritial value, is studied in [8℄. Notie that their behaviourdi�ers drastially from the ase of �nite variane of jumps. Using theresults of [8℄ we obtain a number of statements on asymptoti behaviorof the �rst moments of the numbers of partiles for weakly superritialBRWs. The obtained results are generalized then to the ase of a �nitenumber of branhing soures for weakly superritial BRWs with heavytails. Referenes1. Yarovaya E.B. Branhing Random Walks in a Non-homogeneousEnvironment. Mosow: Tsentr Prikladnykh Issledovanii priMekhaniko-Matematiheskom Fakul'tete MGU, 2007. [in Russian℄2. Yarovaya E. Branhing Random Walks with Heavy Tails //Communiations in Statistis - Theory and Methods. 2013.No. 42:16. P. 2301�2310.3. Borovkov A., Borovkov K. Asymptoti Analysis of Random Walks.Heavy-Tailed Distributions. Cambridge: Cambridge UniversityPress, 2008.4. Agbor A.,Molhanov S., Vainberg B. Global limit theorems on theonvergene of multidimensional random walks to stable proesses//Stohastis and Dynamis. 2015. No. 15:3. 1550024.5. Rytova A.I., Yarovaya E.B. Multidimensional Watson Lemma andIts Appliations // Mathematial Notes. 2016. Vol. 99, No. 3.P. 64�70.6. Fedoryuk M.V. Asymptotis: Integrals and Series, in MathematialReferene Library. Mosow: Nauka, 1987. [in Russian℄7. Yarovaya E. Criteria for Transient Behavior of SymmetriBranhing Random Walks on Z and Z
2 // New Perspetives onStohasti Modeling and Data Analysis. Athens: ISAST, 2014.P. 283�294,8. Yarovaya E.B. The Struture of the Positive Disrete Spetrum ofthe Evolution Operator Arising in Branhing Random Walks //Doklady Mathematis. 2015. Vol. 92, No. 1. P. 1�4.



218 Asymptoti analysis of omplex stohasti systemsAsymptoti behaviour of generalized renewalproesses and some appliationsA. SokolovaLomonosov Mosow State University, Mosow, RussiaLet {Tn}n≥1 be a sequene of independent non-negative randomvariables, Fj is the distribution funtion of variable Tql+j for some �xedinteger l > 1 , q = 1, 2, . . .. Let {Xi}i=0,...,k−1 be another sequeneof independent random variables (r.v.), eah Xi has its distributionfuntion Gi. The sequenes {Tn} and {Xi} are also supposed to beindependent.Let us de�ne generalized delayed periodial renewal proess in thefollowing way: Sn = X0+ . . .+Xn, 0 ≤ n ≤ k−1, whereas Sn = Sk−1+
T1 + . . .+ Tn−k+1 for n ≥ k.The partial sums Sn are alled the renewals and the summands Tiand Xi are the intervals between the renewals.The main objet of our onsideration is the ounting proess

Nt = min{k ≥ 0 : Sk > t},representing the number of renewals that have ourred by time t.The purpose of the talk is investigation of the asymptotibehaviour of de�ned renewal proess Nt and appliation of obtainedresults to the risk theory.Using tauberian theorem (see, e.g. [1℄) the asymptoti form of renewalfuntion is found. The results onerning simple renewal proesses arealso used (see, e.g. [2℄, [3℄, [4℄). The analogues of the strong law of largenumbers, entral limit theorem and funtional limit theorem are proved.The main steps of researh:1. Finding the limit behaviour and distribution of the proess on thebasis of asymptoti behaviour of sequene of renewals.2. Introdution of the auxiliary random elements by means ofentering and normalization of partial sums of proess.3. Proof of the weak onvergene of auxiliary elements to a Wienerproess.4. At last we proeed to the proess onstruted aording to ountingproess Nt using the theorem about the random hange of measure(see, e.g. [5℄).



Asymptoti analysis of omplex stohasti systems 219Theorem 1. Let Sn be a generalized delayed periodial renewalproess and Nt a ounting proess assoiated with it. Suppose thatall the summands Tql+i have �nite mathematial expetation µi < ∞,
i = 1, . . . , l . Then with probability 1

Nt

t
→ l

µ
,where µ = µ1 + . . .+ µl.Theorem 2. Suppose that r.v.'s Tql+i have �nite mathematialexpetations µi < ∞ and varianes 0 < σ2

i < ∞, respetively, i =
1, . . . , l, and r.v.'s Xj have �nite mathematial expetations νj. Then,as t→ ∞, we have

Nt − tlµ−1

σl
√
tµ−3

d→ ξ ∼ N(0, 1),where µ = µ1 + . . . + µl, σ2 = σ2
1 + . . . + σ2

l , d→ denotes weakonvergene, and ξ ∼ N(0, 1) means that r.v. ξ has standard Gaussiandistribution.Theorem 3. Let us de�ne the sequene of random funtions
Zn(t, ω) =

Nnt(ω)− ntlµ−1

σlµ−3/2
√
n

,where µ = µ1 + . . .+ µl, σ
2 = σ2

1 + . . .+ σ2
l .For de�ned random funtions Zn(t, ω) the following expression holds:

Zn
D→W,where W is a Wiener proess and D→ denotes weak onvergene in thespae D[0, 1] . Referenes1. Feller W. An Introdution to Probability Theory and itsAppliations, Vol. 2. New York: Wiley, 1971.2. Afanasyeva L., Bulinskaya E. Stohasti Proesses in QueueingTheory and Inventory Control. Mosow: Mosow State UniversityPress, 1980. [In Russian.℄3. Borovkov A. Probability Theory. Mosow: Editorial URSS, 1999.[In Russian.℄4. Cox D.R. Renewal Theory. Methuen and Company, Ltd. 1962.5. Billingsley P. Convergene of Probability Measures. New York:Wiley, 1968.



220 Asymptoti analysis of omplex stohasti systemsBranhing random walks.Spetral approah∗E.B. YarovayaLomonosov Mosow State University, Mosow, RussiaSteklov Mathematial Institute, Mosow, RussiaStohasti proesses with generation and transport of partiles areused in di�erent areas of nature sienes: statistial physis, hemialkinetis, et. [1-2℄. Behavior of proesses with generation and transportof partiles in many ways determined by properties of a partile motionand a dimension of the spae in whih the partiles evolve. In [3℄for studying a hange of homopolymers spatial struture under thein�uene of temperature there was suggested an approah based on aresolvent analysis of the evolutionary operator. Unlike to [3℄ we onsidera multidimensional integer lattie instead of R
d and a random walkinstead of a Brownian motion [4℄. The desription of a random walkin terms of Green's funtion allows us to o�er a general approah toinvestigation of random walks with �nite as well as with in�nite varianeof jump.We onsider a ontinuous-time symmetri branhing random walkon a multidimensional lattie with a �nite set of the partile generationentres, i.e. branhing soures [5℄. Branhing random walks modelsare relevant in numerous appliations, inluding population studies.Partiular attention is paid to branhing random walks with in�nitevariane jumps. Suh branhing random walks an be used in modelingof omplex stohasti systems with singular spaial dynamis, implyingthe existene of heavy-tailed distributions of random walk jumps [6℄.The main objet of study is the evolutionary operator for the meannumber of partiles both at an arbitrary point and on the entirelattie. The existene of positive eigenvalues in the spetrum of anevolutionary operator results in the exponential growth of the numberof partiles in branhing random walks, alled superritial in suhase. For superritial branhing random walks, it is shown that theamount of positive eigenvalues of the evolutionary operator, ountingtheir multipliity, does not exeed the amount of branhing soures onthe lattie, while the maximal of these eigenvalues is always simple [6℄.We demonstrate that the appearane of multiple lower eigenvalues inthe spetrum of the evolutionary operator an be aused by a kind

∗This researh is supported by the Russian Siene Foundation, projet no. 14-21-00162.



Asymptoti analysis of omplex stohasti systems 221of `symmetry' in the spatial on�guration of branhing soures [5℄.The presented results are based on Green's funtion representation oftransition probabilities of an underlying random walk and over not onlythe ase of the �nite variane of jumps but also a less studied ase ofin�nite variane of jumps. Referenes1. G�artner J., Molhanov S. Paraboli problems for the Andersonmodel. I. Intermitteny and related topis // Comm. Math. Phys.1990. No. 132:3 P. 613�655.2. G�artner J., Molhanov S. Paraboli problems for the Andersonmodel. II. Seond-order asymptotis and struture of high peaks.// Probab. Theory Related Fields. 1998. No. 111:1, P. 7�55.3. Cranston M., Koralov L., Molhanov S., and B. Vainberg B.Continuous model for homopolymers // J. Funt. Anal. (2009),No. 256:82, P. 656�2696.4. Molhanov S., Yarovaya E. //Proeedings of the Steklov Instituteof Mathematis. 2013. Vol. 282, P. 186�201.5. Yarovaya E.B. Positive Disrete Spetrum of the EvolutionaryOperator of Superritial Branhing Walks with Heavy Tails //Methodology and Computing in Applied Probability. First online:12 Marh, 2016. P. 1�17.6. Yarovaya E.B. The Struture of the Positive Disrete Spetrum ofthe Evolution Operator Arising in Branhing Random Walks //Doklady Mathematis. 2015. Vol. 92, No. 1. P. 1�4.Asymptoti properties of marginaldistributions in a polling system with bathrenewal inputs and limited servie poliy∗A.V. Zorine and M.A. FedotkinNational Researh Lobahevsky State University of Nizhni Novgorod,Nizhni Novgorod, RussiaConsider a polling system with m < ∞ stations, bath renewalinputs, limited servie poliy, and �xed swith-over times. Inter-arrival
∗This work was ful�lled as a part of State Budget Researh and Developmentprogram No. 01201456585 �Mathematial modeling and analysis of stohastievolutionary systems and deision proesses� of National Researh Lobahevsky StateUniversity of Nizhni Novgoroda and supported by State Program �Promoting theompetitiveness among world's leading researh and eduational enters�.



222 Asymptoti analysis of omplex stohasti systemstimes at the j-th station are i.i.d. non-negative random variables withprobability density funtion aj(t). A bath is size b with probability fj(b),
b = 1, 2, . . . . Server sojourn time at the j-th station is a non-randomonstant T2j−1 > 0. During this interval at most ℓj ustomers at thestation an be servied. These may be both the ustomers present atthe station at the beginning of the servie slot and the newly arrivingustomers. Servie times of individual ustomers are not spei�ed andare mutually dependent in a way they manage to leave before the slotends. Servied ustomers leave the queueing system. After station j < mthe server swithes to the next station (j+1), after the station j = m, thestation 1 is visited. Swith-over time is a non-random onstant T2j > 0.We observe the queueing system at epohs τi, i = 0, 1, . . . of servieperiods and swith-over periods termination. Denote by Γi ∈ Γ, Γ =
= {Γ(1),Γ(2), . . . ,Γ(2m)} the server state during time interval (τi−1, τi],
i = 1, 2, . . . , by Γ0 ∈ Γ the server state at time τ0, where Γ(2j−1) standsfor servie at the station j and Γ(2j) stands for swith-over from thestation j to the station j + 1 if j < m and from station m to station 1if j = m. Let κj,i be the queue length at the station j at time τi, ζj,i bethe residual inter-arrival time at time τi at the station j, i = 0, 1, . . . .Put κi = (κ1,i, . . . , κm,i), ζi = (ζ1,i, . . . , ζm,i). In [1℄ a probability spae
(Ω,F,P) was onstruted and a stohasti sequene

{(Γi, κi, ζi); i = 0, 1, . . .} (1)was de�ned on it and the Markov property was proven for sequene (1)and for sequenes
{(Γi, κj,i, ζj,i); i = 0, 1, . . .}, j = 1, . . . ,m. (2)Stohasti sequenes (1) and (2) are general Markov hains [2℄ withunountable state spaes. Further, given that for eah j = 1, . . . , mthere exists a t0j > 0 suh that aj(t) = 0 for t < t0j and aj(t) > 0 for

t > t0j and fj(1) > 0, in [1℄ the general Markov hain (1) was proven tobe ψ-irreduible [2℄. Moreover, if eah aj(t) is ontinuous for t > t0j thensome small sets [2℄ of the general Markov hain (1) are known.Denote by Qj,i(r, x, y) = P({ω : Γi = Γ(r), κj,i = x, ζj,i < y}), j = 1,. . . , m marginal probability distributions for Markov hains (2) and by
Ψj,i(z, s, r) =

∞∑

x=0

∞∫

0

zxe−sy dyQj,i(r, x, y)their integral transforms. Set λj = ∞∫

0

taj(t) dt and λ̄j = λj
∞∑
b=1

b fj(b).We laim the following.



Asymptoti analysis of omplex stohasti systems 223Theorem 1. Let series f̂j(z) = ∞∑

b=1

b fj(b) and funtions Ψj,0(z, s, r),
s > 0, r = 1, 2, . . . , 2m be analyti in an open disk |z| < 1 + ε for some
ε > 0 and some j = 1, . . . , m. Further, let

λ̄j(T1 + . . .+ T2m)− ℓj < 0.Then the funtions Ψj,i(z, s, r), s > 0, r = 1, 2, . . . , 2m, and i = 0, 1, . . .are uniformly bounded w.r.t. z in an open disk |z| 6 1 + ε1, 0 < ε1 < ε,and the sequene {Eκj,i; i = 0, 1, . . .} is bounded.Theorem 1 plays an elemental role in establishing a su�ientondition for the existene of a stationary probability distribution forthe Markov hain (1) by iterative-dominating approah.Referenes1. Zorine A.V. A yberneti model of yli ontrol of on�iting �owswith an after-e�et // Uhenye Zapiski Kazanskogo Universiteta.Seriya Fiziko-Matematiheskie Nauki. 2014. V. 156, � 3. P. 66�75(in Russian).2. Meyn S.P., Tweedie R.L. Markov hains and stohasti stability.London: Springer-Verlag, 1993.
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